scholarly journals Occupational Exposure to Ionizing Radiation in Interventional Cardiology Practices in Bangladesh during 2010-2014

2016 ◽  
Vol 3 (2) ◽  
pp. 63-68
Author(s):  
Mohammad Sohelur Rahman ◽  
Aleya Begum ◽  
Md. Rezaul Karim Khan ◽  
Md. Ashraful Hoque ◽  
M. M. Mahfuz Siraz

Objective: The objective of this study is to assess, analyze and discuss the occupational exposure to ionizing radiation in interventional cardiology practices in Bangladesh for the last 5-year periods. Method: Each year, about 100 workers working in interventional cardiology departments of big hospitals in Dhaka City were monitored using Harshaw Thermoluminescent Dosimeters (TLDs) for quarterly basis. The effective dose of the occupational workers were measured using Two Harshaw TLD Readers (one is manual TLD reader, model-4500, and another is automatic TLD reader, model 6600 plus). Finding: The average annual effective dose (about 80 % workers) in interventional cardiology practices were <2mSv in 2010-2014 and no monitored workers were found to have received an occupational exposure >50 mSv in a single year or >100 mSv in a 5 year period. The status and trends in occupational exposure demonstrate that radiation protection conditions at the majority of the workplace were adequate. Despite that, further optimization is necessary due to large variations observed in the maximum individual doses over the 5-year periods.  

Author(s):  
Akinlade Bidemi I. ◽  
Akisanya Daniel F. ◽  
Badmus Biodun S.

Objective: This study was carried out to evaluate occupational dose of personnel, engaged in radiation work without wearing monitoring device, at five diagnostic centres in Abeokuta, Ogun State metropolis, namely, Rainbow, New image, Bethel, Akinolugbade and Abiolad.  Materials and Methods: Thermoluminescent dosimeters (TLDs) obtained from Radiation Protection Services, Lagos State University (LASU), Ojo were used for dose measurements. LASU is accredited by the Nigerian Nuclear Regulatory Authority (NNRA) to provide radiation monitoring services. The TLDs were distributed to each of the centre for personnel and area (control and supervised) monitoring. The period of exposure of the TLDs was three months. The exposed TLDs were returned to LASU for processing. The effective dose received by personnel per quarter was extrapolated to annual effective dose to make comparison with the International Commission on Radiation Protection (ICRP) recommended dose limit. The stochastic effect of the measured dose was also estimated.  Results: Annual effective dose received by all personnel ranged from 1.16 - 2.54 mSv. While the highest value was obtained by personnel at Bethel diagnostic centre, the lowest value was obtained at Akinolugbade. The risk of cancer associated with these values, estimated for a million population, was 112 and 61 at Bethel and Akinolugbade respectively. Conclusion: This study showed that the annual effective doses to personnel at these centres were below the ICRP recommended dose of 20 mSv per annum. However, the Managements of these diagnostic centres should provide monitoring devices for their radiation workers in line with NNRA authorization requirements.


2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5034 ◽  
Author(s):  
Iam Palatnik de Sousa ◽  
Carlos R. H. Barbosa ◽  
Elisabeth Costa Monteiro

The results of a computer simulation examining the compliance of a given transcranial magnetic stimulation device to the 2010 International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines are presented. The objective was to update the safe distance estimates with the most current safety guidelines, as well as comparing these to values reported in previous publications. The 3D data generated was compared against results available in the literature, regarding the MCB-70 coil by Medtronic. Regarding occupational exposure, safe distances of 1.46 m and 0.96 m are derived from the simulation according to the 2003 and 2010 ICNIRP guidelines, respectively. These values are then compared to safe distances previously reported in other studies.


Author(s):  
M. U. Audu ◽  
G. O. Avwiri ◽  
C. P. Ononugbo

Study of the terrestrial Background Ionizing Radiation levels of selected Oil Spill Communities of Delta State, Nigeria have been carried out using Digilert 200 and Radalert 100 nuclear radiation monitor and a geographical positioning system (Garmin GPSMAP 76S). The exposure rates of the five communities ranges from 0.016 to 0.030  at Jones Creek, 0.014 to 0.034  at Opuwade Community, 0.015 to 0.037   at Okpare community, 0.007 to 0.029  at OtuJeremi community and 0.011to 0.040  at Otor-Edo community. The obtained mean exposures rates were higher than ICRP standard limit of 0.013. The absorbed dose rates calculated ranged from 139.2 to 261 (Jones Creek), 121.8 to 259.8 nGyh-1 (Opuwade Community), 130.5 to 321.9 nGyh-1 (Okpare community), 60.9 to 252.3 nGyh-1 (OtuJeremi community) and 95.9 to 348 nGyh-1 (Otor-Edo community). The estimated annual effective dose equivalent varies from  0.21 to 0.40 , 0.19 to  0.45 , 0.20 to  0.49 , 0.09 to 0.39  and  0.15 to 0.53  for Jones Creek, Opuwade Community, Okpare community, Otu Jeremi community and Otor-Edo community respectively while the excess lifetime cancer risk calculated for Jones Creek varies from (0.75  to 1.40)  x 10-3, Opuwade community (0.65 to 1.59 )×, Okpare community (0.70 to 1.73 ) x , OtuJeremi community (0.33 to 1.35)× and Otor-Edo community (0.51 to 1.87)×. All the mean values of absorbed dose, annual effective dose and excess lifetime cancer risk exceeded their recommended safe values. The results obtained in this work may not constitute any immediate health risk to the residents of the selected oil spill communities but long term exposure in the area may lead to detrimental health risks.


Author(s):  
M Senthilkumar ◽  
C Senthil Kumar ◽  
J Koley ◽  
J Velmurugan

Abstract Occupational exposure data in radiation applications provide a good insight on the radiation risks to workers from occupational hazards, the safe practices adopted and in deriving methods to prevent possible radiation exposures. The analysis of occupational exposure may be used to provide regulatory guidance and more focused attention to improve the safety systems, thus improving the personnel and environment safety. In this study, occupational exposure from radiation applications during 2004–18 amounting to a total number of 1951 486 occupational dose data are collected and analysed using the statistical software package, SPSS. As recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation, four critical parameters viz., annual collective effective dose, average annual effective dose, individual dose distribution ratio and the annual collective dose distribution ratio for each practice are estimated. Using the trend observed for these parameters, it is predicted that occupational exposure in diagnostic radiology in the year 2023 would increase by 80% in total number of monitored with 76% increase in average collective dose and no significant change in average annual effective dose. In the same manner, nuclear medicine would see 28% of increase in radiation workers with the increase of 24% in collective dose with no significant change in average annual effective dose. Further, the reasons and area of regulatory focus for the different practices are discussed.


2015 ◽  
Vol 75 (6) ◽  
Author(s):  
S.R. Yahaya ◽  
Mimi H. Hassim

Ionizing radiation has been increasingly applied in medicine and firmly established as an essential tool for diagnosis. There is high possibility for medical radiation workers to receive doses that are considerably higher than recorded by their dosimeters due to lack of knowledge about ionizing radiation, lack of training in radiation protection, and attitude of the workers themselves toward radiation protection. The purpose of this study is to estimate the radiation risk due to occupational exposure to ionizing radiation among medical diagnostic workers at hospitals in Malaysia. Also the objective is to determine the knowledge of occupational radiation exposure and radiation safety among the workers.  The assessment was made based on the collective doses collected from film badge of the workers. The results of risk assessment show the mean annual collective effective dose based on type of X-ray procedure in this study was 5.445mSv, which is much lower compared to the whole body exposure dose limit, set by the ICRP Publication 60. A survey on knowledge of occupational radiation exposure and radiation safety was conducted using questionnaire and it was found that vast majority of respondents were aware of radiation safety with 91.3% answered the specific questions regarding radiation protection at workplace correctly. Unfortunately only 30.4% of the respondents fully understand the hazard they are exposed to. The study reveals that there is a critical need to educate not only medical radiation workers but also medical doctors and nurses to decrease unnecessary occupational exposure to radiation hazard.


2019 ◽  
Vol 160 ◽  
pp. 100-104
Author(s):  
Ibrahim I. Suliman ◽  
Lamia H. Salih ◽  
Dua M. Ali ◽  
Abdulaziz S. Alaamer ◽  
M.A. Al-Rajhi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document