scholarly journals Influência da Oscilação do Atlântico Norte no clima do continente europeu e no caudal dos rios ibéricos atlânticos

Finisterra ◽  
2012 ◽  
Vol 37 (73) ◽  
Author(s):  
Ricardo Trigo ◽  
Timothy Osborn ◽  
João Corte-Real

THE IMPACT OF THE NORTH ATLANTIC OSCILLATION ON THE EUROPEAN CLIMATE AND RIVER FLOW OF THREE MAJOR IBERIAN RIVERS – The North Atlantic Oscillation (NAO) is the most dominant mode of atmospheric circulation variability over the entire Northern Hemisphere (NH) and has recently been shown to be related to climate over large regions of the NH, in particular, over the European and North American continents. Here, a multivariable analysis of the influence ofthe NAO on the climate of the North Atlantic and European sectors is presented using the 40 year (1958-97) reanalysis data set from National Centres for Environmental Prediction. Using high and low NAO index composites, anomaly fields of climate variables are then interpreted based on physical mechanisms associated with the anomalous mean flow (characterised by the surface wind field) and theanomalous eddy activity (characterised by the surface vorticity and the 500hPa storm track fields). It is shown that NAO-related temperature patterns are mainly controlled by the advection of heat by the anomalous mean flow. However, asymmetries between minimum and maximum temperatures, and more significantly, between positive and negative phases of NAO imply the importance of a different mechanism, namely the modulation of short wave and long wave radiation by cloud cover variations associated with the NAO. Furthermore, NAO influence over two different precipitation-related variables, namely, precipitation rate and precipitable water display different patterns. Precipitable water is shown to be strongly related to the corresponding anomaly fields of temperature while precipitation rate appears to be controlled by the surface vorticity field and associated strength of the tropospheric synoptic activity. Finally, we have assessed the impact of the NAO on winter river flow regimes for several different Portuguese rivers, including the three main international Iberian rivers, the Douro (north), the Tagus (centre) and the Guadiana (south). Results show that the large inter-annual variability of flow of these three rivers is largely modulated by the NAO. Such modulation, associated with the recent positive trend of the NAO index, might implicate a significant decrease of the available flow. This reduction can representan important hazard for the Portuguese economy due to its negative impact in agricultural yield and hydroelectric power production.

2011 ◽  
Vol 15 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Shouraseni Sen Roy

Abstract The present study focuses on the impact of the North Atlantic Oscillation (NAO) in shaping the regional-level precipitation during the peak months of the two main rainy seasons over the Indian subcontinent. Monthly precipitation data from 1871 to 2005 were collected for 30 homogenous regions across the subcontinent. Regression analysis was used to analyze the strength of the relationship between NAO on regional-level precipitation patterns. The results of the study showed distinct spatial variations in the response of regional-level rainfall to the monthly NAO index. There were greater variations in the strength of the regression coefficients for peak monsoon rainfall (PMR) compared to the peak winter rainfall (PWR) season. During the latter half of the year, the association between PMR and the NAO index was predominantly negative. In general, the role of NAO was more pronounced across most of the regions in the peninsular India.


2005 ◽  
Vol 5 (3) ◽  
pp. 331-344 ◽  
Author(s):  
J. L. Zêzere ◽  
R. M. Trigo ◽  
I. F. Trigo

Abstract. The aim of this study is to assess the impact of the North Atlantic Oscillation (NAO) on both the winter precipitation and the temporal occurrence of different landslide types in Portugal. The analysis is applied to five sample areas located just north of Lisbon, the capital of Portugal. These sites are particularly relevant because actual dates of most of the recent landslide events are known but also because the landslides occurred in a suburban area with growing urbanization pressure. Results show that the large inter-annual variability of winter precipitation observed in western Iberia, i.e. Portugal and parts of Spain, is largely modulated by the NAO mode. In particular, precipitation falling in Portugal between November and March presents a correlation coefficient of R=–0.66 with the NAO index. Precipitation distribution for the reference rain gauge in the study area reveals that the probability of a wet month to occur is much higher for low NAO index composites than for the corresponding high NAO index composite. It is shown that this control, exerted by NAO on the precipitation regime, is related to corresponding changes in the associated activity of North-Atlantic storm tracks that affect the western Iberia. Landslide activity in the study area is related to both intense, short duration precipitation events (1–15 days) and long-lasting rainfall episodes (1–3 months). The former events trigger shallow translational slides while the later episodes are usually associated with deeper and larger slope movements. This second group of landslides is shown to be statistically associated with the 3-month average of the NAO index.


2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2008 ◽  
Vol 8 (3) ◽  
pp. 483-499 ◽  
Author(s):  
J. L. Zêzere ◽  
R. M. Trigo ◽  
M. Fragoso ◽  
S. C. Oliveira ◽  
R. A. C. Garcia

Abstract. Landslides occurred in the Lisbon area during the last 50 years were almost always induced by rainfall and have been used to establish rainfall thresholds for regional landslide activity. In 2006, three new rainfall-triggered landslide events occurred in the study area, namely on the 20 March, the 25–27 October, and the 28 November. Landslide events occurred in March and October 2006 include shallow translational slides and few debris flows, and the corresponding absolute antecedent rainfall was found to be above the threshold for durations ranging from 4 to 10 days. These events also fit the combined threshold of daily precipitation and 5 days calibrated antecedent rainfall values. Likewise the landslide event that took place in late November 2006 includes some slope movements with deeper slip surfaces, when compared with landslides dating from March and October. Moreover, the corresponding absolute antecedent rainfall was also found to be above the 40-day period rainfall threshold. Here we characterize in detail the short and long-term atmospheric circulation conditions that were responsible for the intense rainfall episodes that have triggered the corresponding landslide events. It is shown that the three rainfall episodes correspond to considerably different synoptic atmospheric patterns, with the March episode being associated to an intense cut-off low system while the October and November episodes appear to be related to more typical Atlantic low pressure systems (and associated fronts) travelling eastwards. Finally, we analyse the role played by the North Atlantic Oscillation (NAO) during those months marked by landslide activity. It is shown that the NAO index was consistently negative (usually associated with above average precipitation) for the months prior to the landslide events, i.e. between October 2005 and March 2006, and again between August and October 2006.


2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


2020 ◽  
Vol 33 (3) ◽  
pp. 907-923 ◽  
Author(s):  
Bianca Mezzina ◽  
Javier García-Serrano ◽  
Ileana Bladé ◽  
Fred Kucharski

AbstractThe winter extratropical teleconnection of El Niño–Southern Oscillation (ENSO) in the North Atlantic–European (NAE) sector remains controversial, concerning both the amplitude of its impacts and the underlying dynamics. However, a well-established response is a late-winter (January–March) signal in sea level pressure (SLP) consisting of a dipolar pattern that resembles the North Atlantic Oscillation (NAO). Clarifying the relationship between this “NAO-like” ENSO signal and the actual NAO is the focus of this study. The ENSO–NAE teleconnection and NAO signature are diagnosed by means of linear regression onto the sea surface temperature (SST) Niño-3.4 index and an EOF-based NAO index, respectively, using long-term reanalysis data (NOAA-20CR, ERA-20CR). While the similarity in SLP is evident, the analysis of anomalous upper-tropospheric geopotential height, zonal wind, and transient-eddy momentum flux, as well as precipitation and meridional eddy heat flux, suggests that there is no dynamical link between the phenomena. The observational results are further confirmed by analyzing two 10-member ensembles of atmosphere-only simulations (using an intermediate-complexity and a state-of-the-art model) with prescribed SSTs over the twentieth century. The SST-forced variability in the Northern Hemisphere is dominated by the extratropical ENSO teleconnection, which provides modest but significant SLP skill in the NAE midlatitudes. The regional internally generated variability, estimated from residuals around the ensemble mean, corresponds to the NAO pattern. It is concluded that distinct dynamics are at play in the ENSO–NAE teleconnection and NAO variability, and caution is advised when interpreting the former in terms of the latter.


Sign in / Sign up

Export Citation Format

Share Document