scholarly journals Application of in situ and ex situ Characterization of Atomic Layer Deposition Processes for Gallium Phosphide and Sodium Fluoride

Author(s):  
Sara Rose Kuraitis

Atomic layer deposition (ALD) is a vapor deposition technique for synthesizing thin films with nanometer thickness control. ALD films are deposited on a substrate surface in a cyclic layer-by-layer fashion utilizing alternating doses of highly reactive chemical precursors. Precursors are selected to undergo self-limiting chemical reactions with the surface, and desired film thickness is achieved by varying the number of ALD cycles accordingly. Optimization of ALD process parameters and precursor chemistry enables conformal coating of arbitrary substrate geometries, including high aspect ratio features such as trenches. In the decades since its introduction, ALD has been used for applications across many industries, including semiconductor device manufacturing, emerging battery technologies, and optoelectronics. In this work, I present investigation of two previously reported chemistries for ALD of gallium phosphide (GaP), as well as improvements made to a custom ALD reactor to facilitate better process control and characterization. I also present a new process for thermal ALD of sodium fluoride (NaF), with potential applications in electrode coatings for sodium-ion batteries. To my knowledge, this is the first report of NaF ALD. Finally, I summarize obstacles which may be addressed in future studies that build upon this work.

2016 ◽  
Vol 316 ◽  
pp. 160-169 ◽  
Author(s):  
Nicholas David Schuppert ◽  
Santanu Mukherjee ◽  
Alex M. Bates ◽  
Eun-Jin Son ◽  
Moon Jong Choi ◽  
...  

2017 ◽  
Vol 139 (41) ◽  
pp. 14518-14525 ◽  
Author(s):  
Degao Wang ◽  
Matthew V. Sheridan ◽  
Bing Shan ◽  
Byron H. Farnum ◽  
Seth L. Marquard ◽  
...  

2013 ◽  
Vol 24 (45) ◽  
pp. 455701
Author(s):  
Joonsung Kim ◽  
Jangyeol Yoon ◽  
Junhong Na ◽  
Seongmin Yee ◽  
Gyu Tae Kim ◽  
...  

Author(s):  
Oksana Yu. Gants ◽  
Vladimir M. Kashkin ◽  
Angelina D. Yudina ◽  
Valentina O. Zhirnova ◽  
Anna S. Timonina ◽  
...  

An approach to the synthesis of LiFePO4 and LiMn2O4 by atomic layer deposition is proposed and successfully implemented. The main regularities of the process are revealed and the method of synthesis realization is proposed. The following reagents were proposed and used: 2,2,6,6-tetramethylheptan-3,5 - dione of manganese, oxygen, iron (II) chloride, trimethyl phosphate, water and lithium tret-butylate. Nitrogen was used as an inert gas for purging the reactor and as a carrier gas. The influence of process parameters on the synthesis of thin films based on LiFePO4 and LiMn2O4 is described. It has been established that the phase composition of the resulting films is influenced by the time of precursor release and the process temperature. It is concluded that the increase in process temperature has a positive effect on the density of thin films of LiFePO4 and LiMn2O4. The optimum deposition temperature of LiFePO4 and LiMn2O4 is 400 ºC. It was shown that it is possible to regulate the content of each element and phase composition in films based on LiFePO4 and LiMn2O4 by changing the time of precursors release. The optimal time for the release of precursors for the synthesis of LiFePO4 and LiMn2O4 is 4 s under the stated conditions. Of great importance is the time of release of oxidizing agents-4 and 6 s for the deposition of LiFePO4 and LiMn2O4, respectively. The correlation of the layer growth rate per cycle was revealed, which was 0.2 nm/cycle for the synthesis of LiFePO4. The film obtained in the process is X-ray amorphous. To obtain the crystal structure, the films were annealed in argon at a temperature of 800 ºC. The mechanism of interaction of precursors with the substrate surface is studied. The influence of substrate activation on the uniformity of film growth is revealed.


2019 ◽  
Author(s):  
Timothy J. Gorey ◽  
Yang Dai ◽  
Scott Anderson ◽  
Sungsik Lee ◽  
Sungwon Lee ◽  
...  

In heterogeneous catalysis, atomic layer deposition (ALD) has been developed as a tool to stabilize and reduce carbon deposition on supported nanoparticles. Here, we discuss use of high vacuum ALD to deposit alumina films on size-selected, sub-nanometer Pt/SiO2 model catalysts. Mass-selected Pt24 clusters were deposited on oxidized Si(100), to form model Pt24/SiO2 catalysts with particles shown to be just under 1 nm, with multilayer three dimensional structure. Alternating exposures to trimethylaluminum and water vapor in an ultra-high vacuum chamber were used to grow alumina on the samples without exposing them to air. The samples were probed in situ using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (ISS), and CO temperature-programmed desorption (TPD). Additional samples were prepared for ex situ experiments using grazing incidence small angle x-ray scattering spectroscopy (GISAXS). Alumina growth is found to initiate at least 60 times more efficiently at the Pt24 cluster sites, compared to bare SiO2/Si, with a single ALD cycle depositing a full alumina layer on top of the clusters, with substantial additional alumina growth initiating on SiO2 sites surrounding the clusters. As a result, the clusters were completely passivated, with no exposed Pt binding sites.


2021 ◽  
Vol 39 (3) ◽  
pp. 032405
Author(s):  
Sara Kuraitis ◽  
Donghyeon Kang ◽  
Anil U. Mane ◽  
Hua Zhou ◽  
Jake Soares ◽  
...  

2002 ◽  
Vol 745 ◽  
Author(s):  
Martin M. Frank ◽  
Yves J. Chabal ◽  
Glen D. Wilk

ABSTRACTThere is great need for a mechanistic understanding of growth chemistry during atomic layer deposition (ALD) of films for electronic applications. Since commercial ALD reactors are presently not equipped for in situ spectroscopy, we have constructed a model reactor that enables single-pass transmission infrared spectroscopy to be performed in situ on a layer-by-layer basis. We demonstrate the viability of this approach for the study of aluminum oxide growth on silicon surfaces, motivated by alternative gate oxide applications. Thanks to submonolayer dielectric and adsorbate sensitivity, we can quantify oxide thicknesses and hydroxyl areal densities on thermal and chemical SiO2/Si(100) substrates. Methyl formation and hydroxyl consumption upon initial trimethylaluminum (TMA) reaction can also be followed. We verify that in situ grown Al2O3 films are compatible in structure to films grown in a commercial ALD reactor.


Author(s):  
T. W. Scharf ◽  
S. V. Prasad ◽  
M. T. Dugger ◽  
T. M. Mayer

Tungsten disulphide (WS2) and molybdenum disulfide (MoS2), which belong to the family of transition metal dichalcogenides, are well known for their solid lubricating behavior. Thin films of MoS2 and WS2 exhibit extremely low coefficient of friction (COF ∼0.02 to 0.05) in dry environments, and are typically applied by sputter deposition, pulsed laser ablation, evaporation or chemical vapor deposition, which are essentially either line-of-sight or high temperature processes. With these techniques it is difficult to coat surfaces shadowed from the target, or uniformly coat sidewalls of three-dimensional or high aspect ratio structures. For applications such as micromechanical (MEMS) devices, where dimensions and separation tolerances are small, and aspect ratios are large, these traditional deposition techniques are inadequate. Atomic layer deposition (ALD) is a chemical vapor deposition technique that could overcome many of these problems by using sequential introduction of gaseous precursors and selective surface chemistry to achieve controlled growth at lower temperatures, but the chemistry needed to grow transition metal dichalcogenide films by ALD is not known.


2014 ◽  
Vol 116 (2) ◽  
pp. 663-669 ◽  
Author(s):  
Jian Zhang ◽  
Hui Yang ◽  
Qilong Zhang ◽  
Hao Jiang ◽  
Jikui Luo ◽  
...  

2009 ◽  
Vol 95 (8) ◽  
pp. 082106 ◽  
Author(s):  
Cheng-Wei Cheng ◽  
John Hennessy ◽  
Dimitri Antoniadis ◽  
Eugene A. Fitzgerald

Sign in / Sign up

Export Citation Format

Share Document