STUDY ELECTROMAGNETIC WAVE INTERACTION OF ACTIVE-MATRIX THIN FILM TRANSISTORS

2020 ◽  
Vol 65 (10) ◽  
pp. 24-28
Author(s):  
Thuy Nguyen Thi ◽  
Ngoc Tran Minh ◽  
Tu Vu Minh ◽  
Dung Pham Thi

Active-matrix thin film transistors (TFTs) on glass substrates with a metal backplane, that are applied for flat panel displays, can be considered as a metamaterial absorber. In this study, TFT structures using doped silicon at source, drain, and channel terminals are investigated. These terminals are unchanged in size of 75 µm square and thickness of 5.3 µm. The electric conductivity is varied at the channel. The simulation results show that the structures with 500 S\m electric conductivity channels absorb incident electromagnetic waves with appropriately 100% at 758 GHz and a wide bandwidth of 20 GHz. As the electrical conductivity increases, the absorption and bandwidth are smaller at the main resonance peak. As the electrical conductivity decreases, the absorption falls at the resonance frequency, but the bandwidth is broadened. In addition, the electric field in the channel may influence the electron in the semiconductor and the electrical current between the source and drain terminals. By observing the electric field at the resonance frequency, we found that it is focused on the sides of channel terminals.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327
Author(s):  
Je-Hyuk Kim ◽  
Jun Tae Jang ◽  
Jong-Ho Bae ◽  
Sung-Jin Choi ◽  
Dong Myong Kim ◽  
...  

In this study, we analyzed the threshold voltage shift characteristics of bottom-gate amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) under a wide range of positive stress voltages. We investigated four mechanisms: electron trapping at the gate insulator layer by a vertical electric field, electron trapping at the drain-side GI layer by hot-carrier injection, hole trapping at the source-side etch-stop layer by impact ionization, and donor-like state creation in the drain-side IGZO layer by a lateral electric field. To accurately analyze each mechanism, the local threshold voltages of the source and drain sides were measured by forward and reverse read-out. By using contour maps of the threshold voltage shift, we investigated which mechanism was dominant in various gate and drain stress voltage pairs. In addition, we investigated the effect of the oxygen content of the IGZO layer on the positive stress-induced threshold voltage shift. For oxygen-rich devices and oxygen-poor devices, the threshold voltage shift as well as the change in the density of states were analyzed.


1973 ◽  
Vol 51 (24) ◽  
pp. 2604-2611 ◽  
Author(s):  
H. E. Wilhelm

Based on the Lenard–Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Max wellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron–ion drift velocities.


2020 ◽  
Vol 67 (3) ◽  
pp. 1143-1148
Author(s):  
Hong-Chih Chen ◽  
Guan-Fu Chen ◽  
Jian-Jie Chen ◽  
Chuan-Wei Kuo ◽  
Kuan-Ju Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document