scholarly journals Linear Regression Algorithm Results for a PV Dual-Axis Tracking-Type System

Author(s):  
Motlatsi C. Lehloka ◽  
◽  
James A. Swart ◽  
Pierre E. Hertzog

A photovoltaic (PV) module converts solar energy into electrical energy. In order to increase the output power of any PV module, several factors including tilt angle, orientation angle, load profile, environmental condition, latitude of the location site, and energy management techniques should be considered. It is essential to continuously deliver the highest possible power to a load for a given day, which may be achieved by using a tracking-type system as compared to a fixed-type system. The purpose of this paper is to present the results of an algorithm that may be applied to a dual-axis system located in an elevated plateau of the interior of South Africa in order to sustain a high output power. Two identical 310W PV modules were used for a fixed-type and tracking-type system. The fixed-type system was installed at a tilt angle of Latitude minus 10° serving as a baseline to the tracking-type system. A LabView user interface was developed to record and display the voltage and current measurements from the PV modules. Results indicate that the dual-axis tracking-type system extracted more power (on average 39.32% more power) as compared to the fixed-type system. A key recommendation is to use a linear regression algorithm with a tracking-type system to enable a higher output energy yield for a given day.

2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 290
Author(s):  
Pierre E Hertzog ◽  
Arthur J Swart

It is essential to repeat a test of a given construct in research in order to underpin knowledge, support validity and enable its application in other contexts. The purpose of this article is to present repetitive test results validating the optimum tilt angle of a stationary PV module that was installed in a semi-arid region of South Africa. An experimental design incorporating a two-year longitudinal study is used. The results for 2016 and 2017 reveal that a PV module with a tilt angle of Latitude plus 10° yielded the highest output power for winter months, while a PV module with a tilt angle of Latitude minus 10° yielded the highest output power for summer months. However, for both years, a tilt angle set to the Latitude angle of the installation site yielded the highest overall average output power (60.02 Wh per day). It is therefore recommended to install stationary PV modules at a tilt angle equal to the Latitude of the installation site for a semi-arid region in the southern hemisphere.                                                                                                                                               


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Author(s):  
Sivaraman P. ◽  
Sharmeela C.

A solar micro inverter is a small-size inverter designed for single solar PV module instead of group of solar PV modules. Each module is equipped with a micro inverter to convert the DC electricity into AC electricity and the micro inverter is placed/installed below the module. The advantages of micro inverters are: reduced effect of shading losses, module degradation and soiling losses, enabled module independence, different rating of micro inverter can be connected in parallel to achieve the desired capacity, additional modules can be included at time which allows the good scalability, string design and sizing are avoided, failure of any micro inverter does not affect the overall power generation, individual MPPT controller for each module increases the power generation, any orientation and tilt angle allows higher design flexibility, lower DC voltage increasing the safety, easy to design, handle and install, requires less maintenance, draws attention of design engineers, contractors, etc.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241927
Author(s):  
Syed Zahurul Islam ◽  
Mohammad Lutfi Othman ◽  
Muhammad Saufi ◽  
Rosli Omar ◽  
Arash Toudeshki ◽  
...  

This study analyzes the performance of two PV modules, amorphous silicon (a-Si) and crystalline silicon (c-Si) and predicts energy yield, which can be seen as facilitation to achieve the target of 35% reduction of greenhouse gases emission by 2030. Malaysia Energy Commission recommends crystalline PV modules for net energy metering (NEM), but the climate regime is a concern for output power and efficiency. Based on rainfall and irradiance data, this study aims to categorize the climate of peninsular Malaysia into rainy and dry seasons; and then the performance of the two modules are evaluated under the dry season. A new mathematical model is developed to predict energy yield and the results are validated through experimental and systematic error analysis. The parameters are collected using a self-developed ZigBeePRO-based wireless system with the rate of 3 samples/min over a period of five days. The results unveil that efficiency is inversely proportional to the irradiance due to negative temperature coefficient for crystalline modules. For this phenomenon, efficiency of c-Si (9.8%) is found always higher than a-Si (3.5%). However, a-Si shows better shadow tolerance compared to c-Si, observed from a lesser decrease rate in efficiency of the former with the increase in irradiance. Due to better spectrum response and temperature coefficient, a-Si shows greater performance on output power efficiency (OPE), performance ratio (PR), and yield factor. From the regression analysis, it is found that the coefficient of determination (R2) is between 0.7179 and 0.9611. The energy from the proposed model indicates that a-Si yields 15.07% higher kWh than c-Si when luminance for recorded days is 70% medium and 30% high. This study is important to determine the highest percentage of energy yield and to get faster NEM payback period, where as of now, there is no such model to indicate seasonal energy yield in Malaysia.


2013 ◽  
Vol 61 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Liton Kumar Biswas ◽  
Md. Habibur Rahman ◽  
Saiful Haque

This paper describes construction, development and testing of a low cost PV module characteristics analyzer. A computer-based, fully automatic characteristic analyzer has been designed and developed using locally available components. The system is capable of acquiring current and voltage of PV module by varying the operating point to draw the IV curve and to analyze the module characteristics. In this system, a Pico ADC-16 has been used to convert the analog data into digital. The module current and voltage is changed by using a transistor active load. The operating point of the active load has been changed by the analog output of a DAC and the DAC is driven by a digital counter. A driver program has been developed for the system using C language. Finally, the system was assembled and the characteristics of some PV modules of different power capacity have been studied. It is found that, the system is capable of finding characteristics of PV modules up to the capacity of 75Watt. Dhaka Univ. J. Sci. 61(1): 65-70, 2013 (January) DOI: http://dx.doi.org/10.3329/dujs.v61i1.15098


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Irene Romero-Fiances ◽  
Emilio Muñoz-Cerón ◽  
Rafael Espinoza-Paredes ◽  
Gustavo Nofuentes ◽  
Juan De la Casa

A knowledge gap exists about the actual behavior of PV grid-connected systems (PVGCS) using various PV technologies in Peru. This paper presents the results of an over three-year-long performance evaluation of a 3.3-kWp monocrystalline silicon (sc-Si) PVGCS located in Arequipa, a 3.3-kWp sc-Si PVGCS located in Tacna, and a 3-kWp policrystalline (mc-Si) PVGCS located in Lima. An assessment of the performance of a 3.5-kWp amorphous silicon/crystalline silicon hetero-junction (a-Si/µc-Si) PVGCS during over one and a half years of being in Lima is also presented. The annual final yields obtained lie within 1770–1992 kWh/kW, 1505–1540 kWh/kW, and 736–833 kWh/kW for Arequipa, Tacna, and Lima, respectively, while the annual PV array energy yield achieved by a-Si/µc-Si is 1338 kWh/kW. The annual performance ratio stays in the vicinity of 0.83 for sc-Si in Arequipa and Tacna while this parameter ranges from 0.70 to 0.77 for mc-Si in Lima. An outstanding DC annual performance ratio of 0.97 is found for a-Si/µc-Si in the latter site. The use of sc-Si and presumably, mc-Si PV modules in desert climates, such as that of Arequipa and Tacna, is encouraged. However, sc-Si and presumably, mc-Si-technologies experience remarkable temperature and low irradiance losses in Lima. By contrast, a-Si/µc-Si PV modules perform much better in the latter site thanks to being less influenced by both temperature and low light levels.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Chin Kim Lo ◽  
Yun Seng Lim ◽  
Mee Chu Wong ◽  
Yee Kai Tian

The characteristics of solder joints between the busbars of solar cells and copper ribbons can affect the performance of a photovoltaic (PV) module significantly. The resistivity of the joints and the intermetallic compound structures within the joints are the two main characteristics that impose a substantial impact on the yield and the reliability of the PV module. In this paper, we aim to present and analyze a novel platinum-reinforced tin-silver-copper (Sn-3.8Ag-0.7Cu-0.2Pt) as the lead-free solder material to connect copper ribbons to the metallization of bifacial solar cells. The performance of the PV module using platinum-reinforced solder is investigated by constructing two bifacial PV modules using the popular lead-free Sn-3.8Ag-0.7Cu solder and Sn-3.8Ag-0.7Cu-0.2Pt solder, respectively. Micrographs of the joints are obtained to show that the platinum-reinforced solder joint has fewer voids and a more evenly distributed and thinner intermetallic layer than that of a conventional SnAgCu solder joint. As a result, the physical attachment between the busbars and the ribbon using SnAgCuPt solder is stronger than that using SnAgCu solder. The power outputs of both PV modules are measured together with two commercial PV modules under the sun using an IV plotter. The results show that the total energy yield of the bifacial PV module with the new solder is about 6–10% higher than that with the conventional SnAgCu solder. The energy yield of the bifacial PV module using SnAgCuPt solder is 35.8% and 0.2% higher than that of the commercially available monofacial polycrystalline and monocrystalline PV modules, respectively.


The presence of pigeons on PV modules can negatively affect the output power of a solar renewable energy system. The body of the pigeon itself (and especially the tail) may cause short periods of shading of individual cells, leading to the formation of hotspots. Bird excreta left by the pigeon may cause longer periods of shading, leading to an extended reduction in output power. Some type of intervention may be required to repel pigeons from PV modules, in order to try and maintain the overall efficiency and sustainability of a system. The purpose of this paper is to evaluate the reduction in output power of a picosolar system in order to determine if a possible pattern, or routine, exists with regard to the presence of pigeons. A 10 W pico-solar system was installed in a semi-arid region of South Africa that is home to the feral pigeon (Columba livia). A pigeon detection technique was developed and applied over a period of 13 months to determine when and for how long these pigeons rest on top of a PV module (these are referred to as events). Although these events are primarily random in nature, results do indicate that feral pigeon presence is lowest on a Wednesday during the week and in the summer periods of January to March during a calendar year. They tend to spend, on average, 118 seconds perched on top a PV module, where their tail and droppings cause the most significant impact in terms of interrupting the direct beam radiation from the sun for an individual cell. It is recommended to use these results in formulating an appropriate intervention that may be used as a scare tactic to repel feral pigeons away from PV modules.


2021 ◽  
Vol 15 (1) ◽  
pp. 127-132
Author(s):  
Mladen Bošnjaković ◽  
Marinko Stojkov ◽  
Boris Zlatunić

This study compares the manufacturer's technical data of several PV modules with real measured outdoor technical data. The irradiance effect on several PV modules is examined by the changing a tilt angle and comparing different meteorological situations of sky clearness (clouds) on the modules mounted outdoor and exposed to Sun. Also, the influence of temperature and dust on the performance of a PV panel is under research using measurement methods described in the paper. The measured current and voltage data at the clean surface of the PV module correspond to the declared data of the PV module manufacturer, and in the case of fouling of the module surface with dust, a power drop of 7.39% was measured.


Sign in / Sign up

Export Citation Format

Share Document