scholarly journals Reduction of Mutual Coupling between Radiating Elements of an Array Antenna Using EBG Electromagnetic Band Structures

Author(s):  
Sara Said ◽  
◽  
Abdenacer Es-salhi ◽  
Mohammed Elhitmy

In this paper, a new array antenna configuration based on Electromagnetic Band Gap (EBG) structures has been proposed for 3.5GHz wireless communication systems. The proposed slotted EBG structure, high impedance surface (SHI), consists of three squares and a square ring deposited on a substrate (Rogers RO4350) which has a relative permittivity of 10.2 and a thickness of 1.27mm. Initially a matrix of 3×7 unit cells of EBG structures is introduced between two patches of an array and then a matrix of 3×14 unit cell of EBG structures is integrated between eight patches, which resonate around 3.5GHz (Wi MAX). The insertion of these structures between the radiating elements of an array antenna reduces the mutual coupling and antenna dimensions by approximately (8dB, 11%) and (12 dB, 5%) respectively for two, eight elements array antenna. In addition, the directivity has been slightly improved in the presence of EBG structures, from 4.52dB to 6.09dB for a two-element array antenna, and from 8.18dB to 8.4dB for an eight-element antenna.

2019 ◽  
Vol 8 (4) ◽  
pp. 2807-2812

In current study, mushroom type metamaterial substrate is designed to operate at ISM band and is embedded in 2X2 array as a ground. Unique properties of mushroom type metamaterial substrate like as high impedance surface (HIS) helped in design of low aperture antenna, Artificial magnetic conductor (AMC) helps in enhancing the radiation characteristics and Forbidden band gap (FBG) helps in suppressing transverse electric (TE) and transverse magnetic (TM) wave propagation hence point of mutual coupling and side lobe levels are reduced. So, 2X2 array antenna with corporate feed resonating at 2.5GHz is embedded by array of mushroom type metamaterial unit cells is designed in HFSS and obtained results are compared with 2X2 array resonating at 2.5GHz on conventional conducting ground results. An enhancement in impedance band width of 2.47%, gain of 2.91dB and with lowered side lobe reduction of 3.74dB.


In wireless communication systems, designing of antennae with required parameters is an challenging issue. So, The approach in this paper is to design a corporate fed 2 element antenna array is designed to operate at 2.4 GHz using an FR-4 substrate of height h=1.6mm. For wireless application all the antenna parameters are analysed for two element array antenna with element spacing λ, λ/2 and with miters. It is observed that bandwidth decreases by decreasing the element spacing. But by using miters for antenna with element spacing bandwidth and reflection coefficient are improved. All the antennae are fabricated and tested using VNA E5071C.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Tian Lan ◽  
Qiu-Cui Li ◽  
Yu-Shen Dou ◽  
Xun-Ya Jiang

This paper presents a two-dimensional infinite dipole array system with a mushroom-like high-impedance surface (HIS) ground plane with wide-angle scanning capability in the E-plane. The unit cell of the proposed antenna array consists of a dipole antenna and a four-by-four HIS ground. The simulation results show that the proposed antenna array can achieve a wide scanning angle of up to 65° in the E-plane with an excellent impedance match and a small S11. Floquet mode analysis is utilized to analyze the active impedance and the reflection coefficient. Good agreement is obtained between the theoretical results and the simulations. Using numerical and theoretical analyses, we reveal the mechanism of such excellent wide scanning properties. For the range of small scanning angles, these excellent properties result mainly from the special reflection phase of the HIS ground, which can cause the mutual coupling between the elements of the real array to be compensated by the mutual coupling effect between the real array and the mirror array. For the range of large scanning angles, since the surface wave (SW) mode could be resonantly excited by a high-order Floquet mode TM−1,0 from the array and since the SW mode could be converted into a leaky wave (LW) mode by the scattering of the array, the radiation field from the LW mode is nearly in phase with the direct radiating field from the array. Therefore, with help from the special reflection phase of the HIS and the designed LW mode of the HIS ground, the antenna array with an HIS ground can achieve a wide-angle scanning performance.


Sign in / Sign up

Export Citation Format

Share Document