scholarly journals Supervised Learning Methods of Bilinear Neural Network Systems Using Discrete Data

2016 ◽  
Vol 6 (5) ◽  
pp. 235-240 ◽  
Author(s):  
Toshio Ito ◽  
2019 ◽  
Vol 490 (1) ◽  
pp. 371-384 ◽  
Author(s):  
Aristide Doussot ◽  
Evan Eames ◽  
Benoit Semelin

ABSTRACT Within the next few years, the Square Kilometre Array (SKA) or one of its pathfinders will hopefully detect the 21-cm signal fluctuations from the Epoch of Reionization (EoR). Then, the goal will be to accurately constrain the underlying astrophysical parameters. Currently, this is mainly done with Bayesian inference. Recently, neural networks have been trained to perform inverse modelling and, ideally, predict the maximum-likelihood values of the model parameters. We build on these by improving the accuracy of the predictions using several supervised learning methods: neural networks, kernel regressions, or ridge regressions. Based on a large training set of 21-cm power spectra, we compare the performances of these methods. When using a noise-free signal generated by the model itself as input, we improve on previous neural network accuracy by one order of magnitude and, using a local ridge kernel regression, we gain another factor of a few. We then reach an accuracy level on the reconstruction of the maximum-likelihood parameter values of a few per cents compared the 1σ confidence level due to SKA thermal noise (as estimated with Bayesian inference). For an input signal affected by an SKA-like thermal noise but constrained to yield the same maximum-likelihood parameter values as the noise-free signal, our neural network exhibits an error within half of the 1σ confidence level due to the SKA thermal noise. This accuracy improves to 10$\, {\rm per\, cent}$ of the 1σ level when using the local ridge kernel. We are thus reaching a performance level where supervised learning methods are a viable alternative to determine the maximum-likelihood parameters values.


2019 ◽  
Vol 261 ◽  
pp. 06004
Author(s):  
Aref Harakeh ◽  
Samia Mellah ◽  
Mustapha Ouladsine ◽  
Rafic Younes ◽  
Catherine Bellet

This article proposes a new approach for gas identification, this approach relies on applying supervised learning methods to identify a single gas as well as a mixture of two gases. The gas is trapped in a gas discharge tube, it is then ionized at a relatively low pressure using an HV transformer. The images captured after the ionization of each single gas is then captured and transformed into a database after being treated in order to be classified. The obtained results were very satisfying for SVM as well as for LVQ. For the case of identification of a single gas, the learning rate as well as the validation rate for both methods were 100%. However, for the case of mixture of two gases, a Multi-Layer Perceptron neural network was used to identify the gases, the learning rate as well as the validation rate were 98.59% and 98.77% respectively. The program developed on MATLAB takes the captured image as an input and outputs the identified gases for the user. The gases used in the experiments are Argon (Ar), oxygen (O2), Helium (He) and carbon dioxide (CO2).


Author(s):  
G.Bhargav Chowdari

One of the most serious ethical challenges in the credit card industry is fraud. Our paper’s major goal is to identify credit card theft and offer a reasonable solution to the problem. Credit card fraud has cost customers and banks billions of dollars around the world. Fraudsters are constantly attempting to come up with new ways and tricks to commit fraud, despite the fact that there are several measures in place to prevent it. Fraud detection is extremely important in the banking and finance industries. For detection purposes, we will use an artificial neural network. As a result, in order to prevent it, we will develop a system that will not only detect fraud, but will also detect it before it occurs. In order to detect new scams, our system will learn from previous frauds. Mining algorithms were used to detect fraud, but they failed miserably. We use machine learning methods to detect fraud in credit card transactions in our paper. The research employs supervised learning methods that are applied to a kaggle dataset that is severely skewed and imbalanced. We used robust scalar to balance the set, resulting in 51 percent non-fraud cases and 49 percent fraud ones. Logistic regression, random forest, decision tree, and KNN have all been implemented, with additional learning curves displaying which algorithm performs best. Accuracy, specificity, precision, and sensitivity are the evaluation criteria, and a comparative chart is created to show the comparative analysis of various supervised learning algorithms. KEYWORDS: KNN,Neural network,Logistic regression,Random forest,Decision tree


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Farah Aqilah Bohani ◽  
Azizah Suliman ◽  
Mulyana Saripuddin ◽  
Sera Syarmila Sameon ◽  
Nur Shakirah Md Salleh ◽  
...  

There are many methods or algorithms applicable for detecting electricity theft. However, comparative studies on supervised learning methods for electricity theft detection are still insufficient. In this paper, comparisons based on predictive accuracy, recall, precision, AUC, and F1-score of several supervised learning methods such as decision tree (DT), artificial neural network (ANN), deep artificial neural network (DANN), and AdaBoost are presented and their performances are analyzed. A public dataset from the State Grid Corporation of China (SGCC) was used for this study. The dataset consisted of power consumption in kWh unit. Based on the analysis results, the DANN outperforms compared to other supervised learning classifiers such as ANN, AdaBoost, and DT in recall, F1-Score, and AUC. A future research direction is the experiments can be performed on other supervised learning algorithms with different types of datasets and suitable preprocessing methods can be applied to produce better performance.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 403
Author(s):  
Xun Zhang ◽  
Lanyan Yang ◽  
Bin Zhang ◽  
Ying Liu ◽  
Dong Jiang ◽  
...  

The problem of extracting meaningful data through graph analysis spans a range of different fields, such as social networks, knowledge graphs, citation networks, the World Wide Web, and so on. As increasingly structured data become available, the importance of being able to effectively mine and learn from such data continues to grow. In this paper, we propose the multi-scale aggregation graph neural network based on feature similarity (MAGN), a novel graph neural network defined in the vertex domain. Our model provides a simple and general semi-supervised learning method for graph-structured data, in which only a very small part of the data is labeled as the training set. We first construct a similarity matrix by calculating the similarity of original features between all adjacent node pairs, and then generate a set of feature extractors utilizing the similarity matrix to perform multi-scale feature propagation on graphs. The output of multi-scale feature propagation is finally aggregated by using the mean-pooling operation. Our method aims to improve the model representation ability via multi-scale neighborhood aggregation based on feature similarity. Extensive experimental evaluation on various open benchmarks shows the competitive performance of our method compared to a variety of popular architectures.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


Sign in / Sign up

Export Citation Format

Share Document