scholarly journals Machine Learning Based Intrusion Detection for IoT Botnet

2021 ◽  
Vol 11 (6) ◽  
pp. 399-406
Author(s):  
Sikha Bagui ◽  
◽  
Xiaojian Wang ◽  
Subhash Bagui
Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  

2021 ◽  
pp. 103741
Author(s):  
Dhanke Jyoti Atul ◽  
Dr. R. Kamalraj ◽  
Dr. G. Ramesh ◽  
K. Sakthidasan Sankaran ◽  
Sudhir Sharma ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


Sign in / Sign up

Export Citation Format

Share Document