scholarly journals Study on Urban Catchment Delineation Based on Improved RIDEM

2019 ◽  
Vol 21 (5) ◽  
pp. 781-797
Author(s):  
V. Swathi ◽  
K. Srinivasa Raju ◽  
Murari R. R. Varma ◽  
S. Sai Veena

Abstract The study aims at calibration of the storm water management model (SWMM) with non-dominated sorting genetic algorithm-III (NSGA-III) for urban catchment in Hyderabad, India. The SWMM parameters calibrated were Manning's roughness coefficient (N), depression storage for pervious and impervious areas (DP and Di), sub-catchment width (W), curve number (CN), drying time (dry) of soil and percentage of imperviousness (I). The efficacy of calibration was evaluated by comparing the observed and simulated peak flows and runoff using goodness-of-fit indices. The calibration takes into consideration eight event rainfalls resulting in eight calibrated sets. Weights of goodness-of-fit indices were estimated and the best calibrated set was further validated for five continuous rainfalls/runoffs. Simulated runoff volume and peak runoff over the five continuous rainfalls deviated by 7–22% and 2–20% with respect to observed data. Results indicated that parameters calibrated for an event rainfall could be used for continuous rainfall-runoff modelling. The effect of catchment delineation scale on runoff was also studied. The study indicated that output of the model was sensitive to variation in parameter values of infiltration and imperviousness.


2020 ◽  
Vol 15 (3) ◽  
pp. 184-195
Author(s):  
Réka Csicsaiová ◽  
Ivana Marko ◽  
Jaroslav Hrudka ◽  
Ivona Škultétyová ◽  
Štefan Stanko

The aim of the study is to assess the hydraulic capacity of the sewer network and sewer collector recovery in the urban catchment area of Trnava.The analysis focuses on the evaluation of situations with different precipitation frequencies. Elaboration consists of modeling the current state of the assessed sewer collector B and subsequent loading of this collector by several block rainfalls. Based on the results of the analysis, the recovery of the sewer network proposed.


1992 ◽  
Vol 23 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Å. Spångberg ◽  
J. Niemczynowicz

The paper describes a measurement project aiming at delivering water quality data with the very fine time resolution necessary to discover deterministic elements of the complex process of pollution wash-off from an urban surface. Measurements of rainfall, runoff, turbidity, pH, conductivity and temperature with 10 sec time resolution were performed on a simple urban catchment, i.e. a single impermeable 270 m2 surface drained by one inlet. The paper presents data collection and some preliminary results.


1998 ◽  
Vol 37 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Marie-Christine Gromaire-Mertz ◽  
Ghassan Chebbo ◽  
Mohamed Saad

An experimental urban catchment has been created in the centre of Paris, in order to obtain a description of the pollution of urban wet weather flows at different levels of the combined sewer system, and to estimate the contribution of runoff, waste water and sewer sediments to this pollution. Twenty-two rainfall events were studied from May to October 1996. Dry weather flow was monitored for one week. Roof, street and yard runoff, total flow at the catchment outlet and waste water were analysed for SS, VSS, COD and BOD5, on both total and dissolved fraction. Results show an evolution in the characteristics of wet weather flow from up to downstream: concentrations increase from the catchment entry to the outlet, as well as the proportion of particle-bound pollutants and the part of organic matter. A first evaluation of the different sources of pollution establishes that a major part of wet weather flow pollution originates from inside the combined sewer, probably through erosion of sewer sediments.


1998 ◽  
Vol 37 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Torben Larsen ◽  
Kirsten Broch ◽  
Margit Riis Andersen

The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15 events with time series of concentration of SS, COD, BOD, total nitrogen and total phosphorus. The quality parameters showed significant first flush effects. The paper discusses whether either the event average concentration or the accumulated event mass is the most appropriate way to characterize the quality of the outflow.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1035
Author(s):  
Bartosz Szeląg ◽  
Adam Kiczko ◽  
Anna Musz-Pomorska ◽  
Marcin K. Widomski ◽  
Jacek Zaburko ◽  
...  

Pipe tanks represent important runoff retention elements of urban stormwater systems. They enable us to reduce and retain runoff as well as to mitigate peak flows in the network. Pipe tanks are often taken into account while designing the spatial plan of urban catchment areas. Hence, there is a need to develop a relatively quick and accurate method for pipe tank dimensioning. A graphical–analytical method of designing a pipe tank is presented in the paper. In the assumed methodology, the possibility of employing machine learning for obtaining a more precise error prediction of the proposed pipe tank design method (compared with the tank volume simulations using the storm water management model (SWMM)) are considered. Thus far, this aspect has not been discussed in the literature. In the adopted calculation methodology, sensitivity analysis constitutes an important element, enabling us to assess the influence of the input data assumed for tank design on the dimensions of the outflow devices and the length of the retention chamber.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 110
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Arlex Sanchez

This paper presents the performance quantification of different green-grey infrastructures, including rainfall-runoff and infiltration processes, on the overland flow and its connection with a sewer system. The present study suggests three main components to form the structure of the proposed model-based assessment. The first two components provide the optimal number of green infrastructure (GI) practices allocated in an urban catchment and optimal grey infrastructures, such as pipe and storage tank sizing. The third component evaluates selected combined green-grey infrastructures based on rainfall-runoff and infiltration computation in a 2D model domain. This framework was applied in an urban catchment in Dhaka City (Bangladesh) where different green-grey infrastructures were evaluated in relation to flood damage and investment costs. These practices implemented separately have an impact on the reduction of damage and investment costs. However, their combination has been shown to be the best action to follow. Finally, it was proved that including rainfall-runoff and infiltration processes, along with the representation of GI within a 2D model domain, enhances the analysis of the optimal combination of infrastructures, which in turn allows the drainage system to be assessed holistically.


2019 ◽  
Vol 571 ◽  
pp. 805-818 ◽  
Author(s):  
Sangaralingam Ahilan ◽  
Mingfu Guan ◽  
Nigel Wright ◽  
Andrew Sleigh ◽  
Deonie Allen ◽  
...  

2021 ◽  
Vol 254 ◽  
pp. 105511
Author(s):  
Mousumi Ghosh ◽  
Jitendra Singh ◽  
Sheeba Sekharan ◽  
Subimal Ghosh ◽  
P.E. Zope ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document