scholarly journals Demodulation of Vibration Signal Based on Envelope-Kurtogram for Ball Bearing Fault Detection

2020 ◽  
Vol 4 (2) ◽  
pp. 115-123
Author(s):  
Berli Paripurna Kamiel

Rolling element bearings often suffer damage due to harsh operating and environmental conditions. The method commonly used in detecting faults in a bearing is envelope analysis. However, this method requires setting the central frequency and the correct bandwidth - which corresponds to the resonance frequency of the bearing - for signal demodulation to be effective. This study proposes a kurtogram to determine the correct central frequency and bandwidth to obtain the frequency band with the highest impulse content or the highest kurtosis value. Analysis envelope is applied to the filtered vibration signal using the central frequency and bandwidth parameters obtained from the kurtogram. The results showed that the envelope-kurtogram method is effective for faulty bearing detection as shown in the envelope spectrum where the peaks coincide with the bearing defect characteristic frequency (BPFO) with high accuracy. Likewise, it can be observed several BPFO harmonics which provide information on the level of bearing fault.

Author(s):  
S. Chatterton ◽  
P. Borghesani ◽  
P. Pennacchi ◽  
A. Vania

Diagnostics of rolling element bearings is usually performed by means of a second-order cyclostationary tool applied to the vibration signal, due to the stochastic nature of the contact between the defect and the bearing rolling elements. The most used and simple method is the Envelope Analysis that is based on the identification of bearing damage frequency components in the so-called Square Envelope Spectrum. The main critical point of this technique is the selection of a suitable frequency band for the demodulation of the vibration signal. The most used approach for the frequency band selection is based on the evaluation of the band-Kurtosis index by mean of diagrams as the frequently used Fast Kurtogram or the more recent Protrugram. Both of them may fail in the selection of the optimal frequency band when other vibration sources affect the Kurtosis index. Also critical is the constancy in the time of this optimal band. In the paper, an experimental case of a bearing damage is investigated and an alternative approach for the filter band selection, the so-called “PeaksMap”, will be proposed by the authors and compared with the ones available in the literature.


2021 ◽  
Author(s):  
Zhe Li ◽  
Menghao Zhang ◽  
Longlong Li ◽  
Runlin Chen ◽  
Yanchao Zhang ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 1469-1473
Author(s):  
Wei Ke ◽  
Yong Xiang Zhang ◽  
Lin Li

Vibration signal of rolling-element bearing is random cyclostationarity when a fault develops, the proper analysis of which can be used for condition monitor. Cyclic spectrum is a common cyclostationary analysis method and has a great many algorithms which have distinct efficiency in different application circumstance, two common algorithms (SSCA and FAM) are compared in the paper. The FAM is recommended to be used in diagnosing rolling-element bearing fault via calculation of simulation signal in different signal to noise ratio. The cyclic spectrum of practice signal of rolling-element bearing with inner-race point defect is analyzed and a new characteristic extraction method is put forward. The preferable result is acquired verify the correctness of the analysis and indicate that the cyclic spectrum is a robust method in diagnosing rolling-element bearing fault.


Author(s):  
Y Zhou ◽  
J Chen ◽  
G M Dong ◽  
W B Xiao ◽  
Z Y Wang

The vibration signals of rolling element bearings are random cyclostationary when they have faults. Also, statistical properties of the signals change periodically with time. The accurate analysis of time-varying signals is an essential pre-requisite for the fault diagnosis and hence safe operation of rolling element bearings. The Wigner distribution is probably most widely used among the Cohen’s class in order to describe how the spectral content of a signal changes over time. However, the basic nature of such signals causes significant interfering cross-terms, which do not permit a straightforward interpretation of the energy distribution. To overcome this difficulty, the Wigner–Ville distribution (WVD) based on the cyclic spectral density (CSD) is discussed in this article. It is shown that the improved WVD, based on CSD of a long time series, can render the time–frequency distribution less susceptible to noise, and restrain the cross-terms in the time–frequency domain. Simulation and experiment of the rolling element-bearing fault diagnosis are performed, and the results indicate the validity of WVD based on CSD in time–frequency analysis for bearing fault detection.


2002 ◽  
Vol 8 (3) ◽  
pp. 321-335 ◽  
Author(s):  
Zhidong Chen ◽  
Chris K. Mechefske

This paper reports the results of an investigation in which a Prony model based method is developed. The method shows potential for analysing transient vibration signals. An example is included that shows how the procedure was employed to analyse the transient vibration signals created from faulty low speed rolling element bearings. Spectral plots generated by applying the procedure to very short data samples, as well as trending parameters based on these spectral estimations and Prony parameters, are presented. An equation was also derived to quantitatively determine the fault status. It is shown that application of the Prony model based method has the potential to be an effective as well as efficient machine condition monitoring and diagnostic tool where short duration transient vibration signals are being generated.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1845 ◽  
Author(s):  
Xiaohui Gu ◽  
Shaopu Yang ◽  
Yongqiang Liu ◽  
Rujiang Hao ◽  
Zechao Liu

Informative frequency band (IFB) selection is a challenging task in envelope analysis for the localized fault detection of rolling element bearings. In previous studies, it was often conducted with a single indicator, such as kurtosis, etc., to guide the automatic selection. However, in some cases, it is difficult for that to fully depict and balance the fault characters from impulsiveness and cyclostationarity of the repetitive transients. To solve this problem, a novel negentropy-induced multi-objective optimized wavelet filter is proposed in this paper. The wavelet parameters are determined by a grey wolf optimizer with two independent objective functions i.e., maximizing the negentropy of squared envelope and squared envelope spectrum to capture impulsiveness and cyclostationarity, respectively. Subsequently, the average negentropy is utilized in identifying the IFB from the obtained Pareto set, which are non-dominated by other solutions to balance the impulsive and cyclostationary features and eliminate the background noise. Two cases of real vibration signals with slight bearing faults are applied in order to evaluate the performance of the proposed methodology, and the results demonstrate its effectiveness over some fast and optimal filtering methods. In addition, its stability in tracking the IFB is also tested by a case of condition monitoring data sets.


2020 ◽  
pp. 107754632093819
Author(s):  
Ji Fan ◽  
Yongsheng Qi ◽  
Xuejin Gao ◽  
Yongting Li ◽  
Lin Wang

The rolling element bearings used in rotating machinery generally include multiple coexisting defects. However, individual defect–induced signals of bearings simultaneously arising from multiple defects are difficult to extract from measured vibration signals because the impulse-like fault signals are very weak, and the vibration signal is commonly affected by the transmission path and various sources of interference. This issue is addressed in this study by proposing a new compound fault feature extraction scheme. Vibration signals are first preprocessed using resonance-based signal sparse decomposition to obtain the low-resonance component of the signal, which contains the information related to the transient fault–induced impulse signals, and reduce the interference of discrete harmonic signal components and noise. The objective used for adaptively selecting the optimal resonance-based signal sparse decomposition parameters adopts the ratio of permutation entropy to the frequency domain kurtosis, as a new comprehensive index, and the optimization is conducted using the cuckoo search algorithm. Subsequently, we apply multipoint sparsity to the low-resonance component to automatically determine the possible number of impulse signals and their periods according to the peak multipoint sparsity values. This enables the targeted extraction and isolation of fault-induced impulse signal features by multipoint optimal minimum entropy deconvolution adjustment. Finally, the envelope spectrum of the filtered signal is used to identify the individual faults. The effectiveness of the proposed scheme is verified by its application to both simulated and experimental compound bearing fault vibration signals with strong interference, and its advantages are confirmed by comparisons of the results with those of an existing state-of-the-art method.


2013 ◽  
Vol 739 ◽  
pp. 413-417
Author(s):  
Ya Ning Wang

Laplace wavelet transform is self-adaptive to non-stationary and non-linear signal, which can detect the singularity characteristic of a signal precisely under strong background noise condition. A new method of bearing fault diagnosis based on multi-scale Laplace wavelet transform spectrum is proposed. The multi scale Laplace wavelet transform spectrum technique combines the advantages of Laplace wavelet transform, envelope spectrum and three dimensions color map into one integrated technique. The bearing fault vibration signal is firstly decomposed using Laplace wavelet transform. In the end, the multi scale Laplace wavelet transform spectrum is obtained and the characteristics of the bearing fault can be recognized according to the multi-scale Laplace wavelet transform spectrum. The proposed method has been verified by vibration signals obtained from rolling bearing with inner race fault.


Sign in / Sign up

Export Citation Format

Share Document