scholarly journals Cystic Fibrosis: Improving quality of life

2021 ◽  
Vol 8 (2) ◽  
pp. 91-96
Author(s):  
Sunil Chaudhry

Cystic Fibrosis (CF) or Mucoviscidosis is an inherited condition. In cystic fibrosis transmembrane conductance regulator (CFTR) protein does not functions properly i.e regulation of fluids and salts outside the cells. Cystic fibrosis affects exocrine glands eg., the mucus-secreting and sweat glands in the respiratory and digestive systems. The frequency of common mutation F508del (deletion of phenylalanine residue at position 508) in children is between 19% and 34%. The estimate frequency of CF as 1:10,000 to 1:40,000 in children. There is no cure for cystic fibrosis, but treatment can reduce symptoms and complications to improve quality of life. Close monitoring and early, aggressive intervention is recommended to slow the progression of CF, which can lead to possible longer life.

2020 ◽  
Vol 21 (12) ◽  
pp. 4486 ◽  
Author(s):  
Giulia Mancini ◽  
Nicoletta Loberto ◽  
Debora Olioso ◽  
Maria Cristina Dechecchi ◽  
Giulio Cabrini ◽  
...  

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.


2016 ◽  
Vol 3 (5) ◽  
pp. 1-210 ◽  
Author(s):  
Eric WFW Alton ◽  
David K Armstrong ◽  
Deborah Ashby ◽  
Katie J Bayfield ◽  
Diana Bilton ◽  
...  

BackgroundCystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport, chronic lung infections, inflammation and eventual respiratory failure. With the exception of the small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect. The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediatedCFTRgene therapy formulation through preclinical and clinical development.ObjectiveTo determine clinical efficacy of the formulation delivered to the airways over a period of 1 year in patients with CF.DesignThis was a randomised, double-blind, placebo-controlled Phase IIb trial of theCFTRgene–liposome complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1). Allocation was blinded by masking nebuliser chambers.SettingsData were collected in the clinical and scientific sites and entered onto a trial-specific InForm, version 4.6 database.ParticipantsPatients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1) between 50% and 90% predicted and any combination ofCFTRmutations. The per-protocol group (≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene therapy (78 randomised).InterventionsSubjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at 28 (±5)-day intervals over 1 year.Main outcome measuresThe primary end point was the relative change in percentage predicted FEV1over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and lower airway potential difference.ResultsThere was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI) 0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective of sex, age orCFTRmutation class. Subjects with a more severe baseline FEV1had a FEV1TE of 6.4% (95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI. The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No difference in treatment-attributable AEs was seen between the placebo and active groups.ConclusionsMonthly application of the pGM169/GL67A gene therapy formulation was associated with an improvement in lung function, other clinically relevant parameters and bronchial CFTR function, compared with placebo.LimitationsAlthough encouraging, the improvement in FEV1was modest and was not accompanied by detectable improvement in patients’ quality of life.Future workFuture work will focus on attempts to increase efficacy by increasing dose or frequency, the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of repeated administration.Trial registrationClinicalTrials.gov NCT01621867.FundingThis project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council and National Institute for Health Research partnership.


Author(s):  
Nicola Shaw ◽  
Sarah Collins ◽  
Thomas Smith ◽  
Anna McCulloch ◽  
Ian Ketchell ◽  
...  

Cystic fibrosis is a life-limiting, inherited, multi-organ disease which affects many systems of the body. Until recently, treatments were only able to ameliorate symptoms, but the introduction of precision medications which modulate the underlying defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene has changed this. Notably improvements in nutrition and lung function, reduced use of antibiotics and reduced occupation rates for hospital beds have been seen. This article summarises the discussion of a group of healthcare professionals from different specialties and an expert patient, representing their personal views and experience of treating patients who are using CFTR modulators. The discussion was sponsored by an unrestricted grant from Chiesi Limited (Manchester, UK).


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 52-54
Author(s):  
Nicolas Lamontagne

Cystic fibrosis (CF) is a progressive life–shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leading to a dysfunctional CFTR protein. The disease affects over 70,000 patients worldwide and while many mutations are known, the F508del mutation affects 90% of all patients. The absence of CFTR in the plasma membrane leads to a dramatic decrease in chloride efflux, resulting in viscous mucus that causes severe symptoms in vital organs like the lungs and intestines. For CF patients that suffer from the life threatening F508del mutation only palliative treatment exist. PRO–CF–MED addresses the specific challenge of this call by introducing the first disease modifying medication for the treatment of the CF patients with F508del mutation. The PRO–CF–MED project has been designed to assess the potential clinical efficacy of QR–010, an innovative disease modifying oligonucleotide–based treatment for F508del patients. Partners within PRO–CF–MED have generated very promising preclinical evidence for QR–010 which allows for further clinical assessment of QR–010 in clinical trials. PRO–CF–MED will enable the fast translation of QR–010 towards clinical practice and market authorisation. PRO–CF–MED has the potential to transform this life–threatening condition into a manageable one.


2020 ◽  
Vol 25 (3) ◽  
pp. 192-197 ◽  
Author(s):  
Kaden Ridley ◽  
Michelle Condren

Elexacaftor-tezacaftor-ivacaftor is a newly approved triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapy that contains 2 correctors and a potentiator of the CFTR channel. Its labeled indication for use is for persons 12 years of age and older with at least 1 F508del mutation for the CFTR gene. This drug combination provides potential therapy to many patients who had previously been excluded from CFTR modulation therapy due to the nature of their genetic mutations. The efficacy demonstrated in clinical trials surpasses the currently available therapies related to lung function, quality of life, sweat chloride reduction, and reducing exacerbations. The most common adverse events seen in clinical trials included rash and headache, and laboratory monitoring is recommended to evaluate liver function. Continued evaluation of patient data is needed to confirm its long-term safety and efficacy. Elexacaftor-tezacaftor-ivacaftor is a monumental and encouraging therapy for cystic fibrosis; however, approximately 10% of the CF population are not candidates for this or any other CFTR modulation therapy.


Breathe ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 210112
Author(s):  
Daniel H. Tewkesbury ◽  
Rebecca C. Robey ◽  
Peter J. Barry

The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1677 ◽  
Author(s):  
Shaiq Sultan ◽  
Andrea Rozzi ◽  
Jessica Gasparello ◽  
Alex Manicardi ◽  
Roberto Corradini ◽  
...  

Peptide nucleic acids (PNAs) have been demonstrated to be very useful tools for gene regulation at different levels and with different mechanisms of action. In the last few years the use of PNAs for targeting microRNAs (anti-miRNA PNAs) has provided impressive advancements. In particular, targeting of microRNAs involved in the repression of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis (CF), is a key step in the development of new types of treatment protocols. In addition to the anti-miRNA therapeutic strategy, inhibition of miRNA functions can be reached by masking the miRNA binding sites present within the 3′UTR region of the target mRNAs. The objective of this study was to design a PNA masking the binding site of the microRNA miR-145-5p present within the 3′UTR of the CFTR mRNA and to determine its activity in inhibiting miR-145-5p function, with particular focus on the expression of both CFTR mRNA and CFTR protein in Calu-3 cells. The results obtained support the concept that the PNA masking the miR-145-5p binding site of the CFTR mRNA is able to interfere with miR-145-5p biological functions, leading to both an increase of CFTR mRNA and CFTR protein content.


2015 ◽  
Vol 43 (5) ◽  
pp. 894-900 ◽  
Author(s):  
Naomi L. Pollock ◽  
Tracy L. Rimington ◽  
Robert C. Ford

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


Sign in / Sign up

Export Citation Format

Share Document