scholarly journals Heparanase-1 is downregulated in chemoradiotherapy orbital rhabdomyosarcoma and relates with tumor growth as well as angiogenesis

2022 ◽  
Vol 15 (1) ◽  
pp. 31-39
Author(s):  
Wei-Qiang Tang ◽  
◽  
Jing Lin ◽  

AIM: To determine the role of heparanase-1 (HPSE-1) in orbital rhabdomyosarcoma (RMS), and to investigate the feasibility of HPSE-1 targeted therapy for RMS. METHODS: Immunohistochemistry was performed to analyze HPSE-1 expression in 51 cases of orbital RMS patients (including 28 cases of embryonal RMS and 23 cases of alveolar RMS), among whom there were 27 treated and 24 untreated with preoperative chemoradiotherapy. In vitro, studies were conducted to examine the effect of HPSE-1 silencing on RMS cell proliferation and tube formation of human umbilical vein endothelial cells (HUVECs). RD cells (an RMS cell line) and HUVECs were infected with HPSE-1 shRNA lentivirus at a multiplicity of infection (MOI) of 10 and 30 separately. Real-time PCR and Western blot were applied to detect the mRNA and protein expression levels of HPSE-1. Cell viability of treated or control RD cells was evaluated by cell counting kit-8 (CCK-8) assay. Matrigel tube formation assay was used to evaluate the effect of HPSE-1 RNAi on the tube formation of HUVECs. RESULTS: Immunohistochemistry showed that the expression rate of HPSE-1 protein was 92.9% in orbital embryonal RMS and 91.3% in orbital alveolar RMS. Tissue from alveolar orbital RMS did not show relatively stronger staining than that from the embryonal orbital RMS. However, despite the types of RMS, comparing the cases treated chemoradiotherapy with those untreated, we have observed that chemoradiotherapy resulted in weaker staining in patients' tissues. The expression levels of HPSE-1 declined significantly in both the mRNA and protein levels in HPSE-1 shRNA transfected RD cells. The CCK-8 assay showed that lentivirus-mediated HPSE-1 silencing resulted in significantly reduced RD cells viability in vitro. Silencing HPSE-1 expression also inhibited VEGF-induced tube formation of HUVECs in Matrigel. CONCLUSION: HPSE-1 silencing may be a promising therapy for the inhibition of orbital RMS progression.

2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Hyun Ju Kim ◽  
Mok-Ryeon Ahn

Apigenin has been reported to exert angiogenic and anticancer activities in vitro. The mechanism of inhibition of angiogenesis by apigenin, however, has not been well-established. In this study, we investigated whether apigenin not only inhibited tube formation but also induced apoptosis in human umbilical vein endothelial cells (HUVECs). Furthermore, strong antiangiogenic activity of apigenin was observed in the in vivo assay using chick embryo chorioallantoic membrane (CAM). We also analyzed changes in survival signals and the apoptotic pathway through Western blotting. The results indicate that apigenin exerts its antiangiogenic effects through induction of endothelial apoptosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Shaoyang Zhang ◽  
Meili Cheng ◽  
Zhen Wang ◽  
Yuzhi Liu ◽  
Yuhua Ren ◽  
...  

Inflammation is a key regulator in the progression of atherosclerosis (AS) which extremely affects people’s health. Secoisolariciresinol diglucoside (SDG), a plant lignan, is relevant to angiogenesis and cardioprotection against ischemia-reperfusion injury and improves vascular disorders. However, the effect of SDG on cardiovascular disorder is not clear. In the present study, we aimed to investigate the effects of SDG on lipopolysaccharide- (LPS-) stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and elucidate the underlying mechanism. The LPS-stimulated HUVEC cellular model was established. The cell viability, the cell tube formation activity, the nitric oxide (NO) release, the levels of inflammatory cytokine interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), the activation of nuclear factor kappa-B (NF-κB) pathway, and the expression of protein kinase B (Akt) were determined using Cell Counting Kit-8, cell tube-formation assay, western blotting, and enzyme-linked immunosorbent assay. Our results revealed that SDG reduces the angiogenic capacity of HUVECs and inhibited LPS-mediated HUVEC injury and apoptosis. In addition, SDG increased NO release and decreased the levels of IL-1β, IL-6, and TNF-α in LPS-treated HUVECs. Meanwhile, SDG inhibited the NF-κB pathway and downregulated Akt expression in LPS-induced HUVECs. Our results indicated that SDG relieves LPS-mediated HUVEC injury by inhibiting the NF-κB pathway which is partly dependent on the disruption of Akt activation. Therefore, SDG exerts its cytoprotective effects in the context of LPS-treated HUVECs via regulation of the Akt/IκB/NF-κB pathway and may be a potential treatment drug for cardiovascular disease.


2019 ◽  
Vol 97 (5) ◽  
pp. 352-358 ◽  
Author(s):  
Leila Safaeian ◽  
Golnaz Vaseghi ◽  
Hedieh Jabari ◽  
Nasim Dana

The proprotein convertases family is involved in several physiological processes such as cell growth, migration, and angiogenesis, and also in different pathological conditions. Evolocumab, an inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9), has recently been approved for treatment of hypercholesterolemia. This study aimed to investigate the effect of evolocumab on angiogenesis in human umbilical vein endothelial cells (HUVECs). Cell proliferation and migration were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell methods. In vitro angiogenesis was assessed by tube formation assay. Vascular endothelial growth factor (VEGF) secretion by HUVECs was also determined using an enzyme-linked immunosorbent assay kit. Evolocumab significantly increased HUVECs viability at 100 μg/mL. Significant enhancement in cell migration, and mean tubules length and size was observed at the concentrations of 10 and 100 μg/mL and also in mean number of junctions at the concentration of 100 μg/mL. Administration of evolocumab at the concentration of 10 μg/mL increased VEGF release into supernatants of HUVECs. Findings of this investigation provided in vitro evidence for pro-angiogenic activity of evolocumab through promoting cell proliferation, migration, tubulogenesis, and VEGF secretion in HUVECs.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5393-5399 ◽  
Author(s):  
Ronen Ben-Ami ◽  
Russell E. Lewis ◽  
Konstantinos Leventakos ◽  
Dimitrios P. Kontoyiannis

AbstractIn susceptible hosts, angioinvasion by Aspergillus fumigatus triggers thrombosis, hypoxia, and proinflammatory cytokine release, all of which are stimuli for angiogenesis. We sought to determine whether A fumigatus directly modulates angiogenesis. A fumigatus culture filtrates profoundly inhibited the differentiation, migration, and capillary tube formation of human umbilical vein endothelial cells in vitro. To measure angiogenesis at the site of infection, we devised an in vivo Matrigel assay in cyclophosphamide-treated BALB/c mice with cutaneous invasive aspergillosis. Angiogenesis was significantly suppressed in Matrigel plugs implanted in A fumigatus–infected mice compared with plugs from uninfected control mice. The antiangiogenic effect of A fumigatus was completely abolished by deletion of the global regulator of secondary metabolism, laeA, and to a lesser extent by deletion of gliP, which controls gliotoxin production. Moreover, pure gliotoxin potently inhibited angiogenesis in vitro in a dose-dependent manner. Finally, overexpression of multiple angiogenesis mediator–encoding genes was observed in the lungs of cortisone-treated mice during early invasive aspergillosis, whereas gene expression returned rapidly to baseline levels in cyclophosphamide/cortisone-treated mice. Taken together, these results indicate that suppression of angiogenesis by A fumigatus both in vitro and in a neutropenic mouse model is mediated through secondary metabolite production.


Sign in / Sign up

Export Citation Format

Share Document