Evolocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, promotes angiogenesis in vitro

2019 ◽  
Vol 97 (5) ◽  
pp. 352-358 ◽  
Author(s):  
Leila Safaeian ◽  
Golnaz Vaseghi ◽  
Hedieh Jabari ◽  
Nasim Dana

The proprotein convertases family is involved in several physiological processes such as cell growth, migration, and angiogenesis, and also in different pathological conditions. Evolocumab, an inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9), has recently been approved for treatment of hypercholesterolemia. This study aimed to investigate the effect of evolocumab on angiogenesis in human umbilical vein endothelial cells (HUVECs). Cell proliferation and migration were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell methods. In vitro angiogenesis was assessed by tube formation assay. Vascular endothelial growth factor (VEGF) secretion by HUVECs was also determined using an enzyme-linked immunosorbent assay kit. Evolocumab significantly increased HUVECs viability at 100 μg/mL. Significant enhancement in cell migration, and mean tubules length and size was observed at the concentrations of 10 and 100 μg/mL and also in mean number of junctions at the concentration of 100 μg/mL. Administration of evolocumab at the concentration of 10 μg/mL increased VEGF release into supernatants of HUVECs. Findings of this investigation provided in vitro evidence for pro-angiogenic activity of evolocumab through promoting cell proliferation, migration, tubulogenesis, and VEGF secretion in HUVECs.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Hsin Lin ◽  
JenHer Lu ◽  
Hsinyu Lee

Lysophosphatidic acid (LPA) is a lipid mediator which binds to G-protein-coupled receptors and regulates various cellular responses, including inflammation of endothelial cells. Interleukin- (IL-) 1β, a proinflammatory cytokine, is elevated upon LPA treatment in human umbilical vein endothelial cells (HUVECs). Previous studies indicated that LPA upregulates vascular endothelial growth factor- (VEGF-) C and lymphatic marker expressions in HUVECs. However, the relationships between LPA-induced VEGF-C and IL-1βexpressions are not clear. In this paper, we demonstrated that, in the presence of AF12198, an inhibitor of the IL-1 receptor abolished LPA-induced VEGF-C and lymphatic marker expressions in HUVECs. Furthermore, LPA-inducedin vitrotube formation of HUVECs was also suppressed by pretreatment with AF12198. Our results suggest that LPA-stimulated lymphangiogenesis in HUVECs is mediated through IL-1β-induced VEGF-C expression.


2010 ◽  
Vol 7 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Nozomu Matsunaga ◽  
Yuichi Chikaraishi ◽  
Masamitsu Shimazawa ◽  
Shigeru Yokota ◽  
Hideaki Hara

Vaccinium myrtillus(Bilberry) extracts (VME) were tested for effects on angiogenesisin vitroandin vivo. VME (0.3–30 µg ml−1) and GM6001 (0.1–100 µM; a matrix metalloproteinase inhibitor) concentration-dependently inhibited both tube formation and migration of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-A (VEGF-A). In addition, VME inhibited VEGF-A-induced proliferation of HUVECs. VME inhibited VEGF-A-induced phosphorylations of extracellular signal-regulated kinase 1/2 (ERK 1/2) and serine/threonine protein kinase family protein kinase B (Akt), but not that of phospholipase Cγ (PLCγ). In anin vivoassay, intravitreal administration of VME inhibited the formation of neovascular tufts during oxygen-induced retinopathy in mice. Thus, VME inhibited angiogenesis bothin vitroandin vivo, presumably by inhibiting the phosphorylations of ERK 1/2 and Akt. These findings indicate that VME may be effective against retinal diseases involving angiogenesis, providing it can reach the retina after its administration. Further investigations will be needed to clarify the major angiogenesis-modulating constituent(s) of VME.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Baoqi Sun ◽  
Yiheng Ding ◽  
Xin Jin ◽  
Shuo Xu ◽  
Hong Zhang

AbstractLong non-coding RNA (lncRNA) H19 has been implicated in tumor angiogenesis. However, whether H19 regulates the progression of corneal neovascularization (CNV) is unclear. The present study aimed to determine the function of H19 in CNV and its possible molecular mechanism. Here, we found that the H19 levels were remarkably increased in vascularized corneas and basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs). In vitro, H19 up-regulation promoted proliferation, migration, tube formation and vascular endothelial growth factor A (VEGFA) expression in HUVECs, and it was found to down-regulate microRNA-29c (miR-29c) expression. Bioinformatics analysis revealed that H19 mediated the above effects by binding directly to miR-29c. In addition, miR-29c expression was markedly reduced in vascularized corneas and its expression also decreased in bFGF-treated HUVECs in vitro. MiR-29c targeted the 3′ untranslated region (3′-UTR) of VEGFA and decreased its expression. These data suggest that H19 can enhance CNV progression by inhibiting miR-29c, which negatively regulates VEGFA. This novel regulatory axis may serve as a potential therapeutic target for CNV.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Cheng ◽  
Chong Chen ◽  
Wenke Guo ◽  
Kun Liu ◽  
Qianqian Zhao ◽  
...  

Purpose: Age-related macular degeneration (AMD) is one of the leading causes of blindness, and choroidal neovascularization (CNV) in AMD can lead to serious visual impairment. Gene expression profiling of human ocular tissues have a great potential to reveal the pathophysiology of AMD. This study aimed to identify novel molecular biomarkers and gene expression signatures of AMD.Methods: We analyzed transcriptome profiles in retinal-choroid tissues derived from donor patients with AMD in comparison with those from healthy controls using a publicly available dataset (GSE29801). We focused on the EFEMP1 gene, which was found to be differentially upregulated in AMD, especially in wet AMD eyes. Serological validation analysis was carried out to verify the expression of EFEMP1 in 39 wet AMD patients and 39 age- and gender-matched cataract controls, using an enzyme-linked immunosorbent assay (ELISA). We then investigated the role of EFEMP1 in angiogenesis through in vitro experiments involving EFEMP1 overexpression (OE) and knockdown in human umbilical vein endothelial cells (HUVECs).Results: An increase in EFEMP1 expression was observed in the retinal-choroid tissues of eyes with AMD, which was more significant in wet AMD than in dry AMD. In addition, there was a significant increase in serum fibulin-3 (EFEMP1 encoded protein) concentration in patients with wet AMD compared with that in the controls. Tube formation and proliferation of EFEMP1-OE HUVECs increased significantly, whereas those of EFEMP1 knockdown HUVECs decreased significantly compared with those of the control. Additional extracellular fibulin-3 treatments did not increase tube formation and proliferation of wildtype and EFEMP1 knockdown HUVECs, indicating that the proangiogenic properties of EFEMP1 are of cell origin. We also found that vascular endothelial growth factor expression in HUVECs was upregulated by EFEMP1 overexpression and downregulated by EFEMP1 knockdown.Conclusion: Our findings demonstrate EFEMP1 as a novel biomarker for CNV in AMD, providing a new target for the development of wet AMD-directed pharmaceuticals and diagnostics.


2019 ◽  
Vol 39 (12) ◽  
pp. NP504-NP514 ◽  
Author(s):  
Yizuo Cai ◽  
Ziyou Yu ◽  
Qian Yu ◽  
Hongjie Zheng ◽  
Yuda Xu ◽  
...  

AbstractBackgroundAdipose tissue and its derivatives, including adipose-derived stem cells, stromal vascular fraction (SVF), and SVF-gel, have been utilized in the treatment of many ischemic disorders. However, the utilization of these products is limited in clinical applications by concerns related to the presence of cells in these derivatives.ObjectivesThis study aimed to isolate a cell-free fat extract (FE) from fat tissue and to evaluate its proangiogenic ability in vitro as well as its protective effects on skin flap survival in vivo.MethodsFE was isolated from human fat via a mechanical approach. The concentrations of several growth factors in the FE were determined by enzyme-linked immunosorbent assay. The proangiogenic ability of FE was evaluated utilizing assays of the proliferation, migration, and tube formation in human umbilical vein endothelial cells in vitro. The protective effects of FE on the survival of random pattern skin flaps were investigated by subcutaneous injection into rats.ResultsEnzyme-linked immunosorbent assay results revealed that FE contained proangiogenic growth factors that promoted proliferation, migration, and tube formation in human umbilical vein endothelial cells in vitro. In addition, FE reduced skin flap necrosis and increased survival, as demonstrated by macroscopic measurements and blood flow analysis. Histological analysis revealed that FE treatment increased the capillary density.ConclusionsFE is a cell-free, easy-to-prepare, and growth-factor–enriched liquid derived from human adipose tissue that possesses proangiogenic activity and improves skin flap survival by accelerating blood vessel formation. FE may be potentially used for treating ischemic disorders.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ke Gong ◽  
Juyang Jiao ◽  
Chaoqun Xu ◽  
Yang Dong ◽  
Dongxiao Li ◽  
...  

Abstract Background Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. Results We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and − 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis. Graphic abstract


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document