scholarly journals Modeling and Thermal-Mechanical Coupling Analysis of Piston in Car Engines

2020 ◽  
Vol 45 (1) ◽  
pp. 83-92
Author(s):  
Feifei Zhao

In this paper, finite-element analysis (FEA) is carried out on the temperature field and stress field of automobile engine piston, as well as the thermal-mechanical load coupling stress field. Through the analysis, the authors grasped the thermal load and combined stress distribution of the piston, and thus optimized the piston design to improve its operational reliability. Specifically, a 1/4 solid model of the piston was constructed in the three-dimensional (3D) computer-aided design (CAD) software Pro/ENGINEER, and then converted into a finite-element model in Pro/Mechanica. Then, an alternating load was imposed on the piston model, and fatigue analysis was performed to identify the parts of the piston prone to fatigue failure, and judge whether the piston structure satisfies working requirements. Next, temperature field analysis was carried out on the piston model. The distribution of the steady-state temperature field as determined by applying temperatures and heat transfer coefficients as required by the boundary conditions of the third kind. Finally, the piston model was subject to thermal-mechanical coupling analysis. The stress and deformation distributions of the piston under the coupled stress field were ascertained under the boundary conditions of temperature field distribution and mechanical load. Through the above work, the authors obtained the basis for safety evaluation of piston, laying the foundation for further reducing the thermal load and optimizing the stress distribution of piston.

2013 ◽  
Vol 448-453 ◽  
pp. 3115-3118 ◽  
Author(s):  
Wang Hao Shen ◽  
Long Kong ◽  
Zhong Da Wang ◽  
Chao Xu ◽  
Ji Xin Wang

Power Spilt Device (PSD) is the key power component of Hybrid Electric Vehicle (HEV). It is very important to simulate and analyze the temperature field and stress field of PSD gear train. The thermal-mechanical coupling analysis is difficult, as it involves the interaction between temperature field and stress field. This paper presents the process of the thermal-mechanical coupling simulation in ABAQUS, and tooth surface temperature and contact stress are obtained and analyzed.


2009 ◽  
Vol 18 (3-4) ◽  
pp. 333-351
Author(s):  
Eva Héripré ◽  
Jérôme Crépin ◽  
Arjen Roos ◽  
Jean-Louis Chaboche

Author(s):  
Ding Guo ◽  
Tianyuan Liu ◽  
Di Zhang ◽  
Yonghui Xie

Abstract Since it is difficult to directly measure the transient stress of a steam turbine rotor in operation, a rotor stress field reconstruction model based on deep fully convolutional network for the start-up process is proposed. The stress distribution in the rotor can be directly predicted based on the temperature of a few measurement points. First, the finite element model is used to accurately simulate the temperature and stress field of the rotor start-up process, generating training data for the deep learning method. Next, data of only 15 temperature measurement points are arranged to predict the stress distribution in critical area of the rotor surface, with the accuracy (R2-score) reaching 0.997. The time cost of the trained neural network model at a single case is 1.42s in CPUs and 0.11s in GPUs, shortened by 97.3% and 99.8% with comparison to finite element analysis, respectively. In addition, the influence of the number of temperature measurement points and the training size are discussed, verifying the stability of the model. With the advantages of fast calculation, high accuracy and strong stability, the fast reconstruction model can effectively realize the stress prediction during start-up processes, resulting in the possibility of real-time diagnosis of rotor strength in operation.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


1975 ◽  
Vol 97 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J. D. Stachiw ◽  
J. R. Maison

The effects of an equatorial flange and a nonuniform wall thickness upon the critical pressure and stress distribution in acrylic plastic hemispheres have been investigated by experimental and analytical methods. Forty acrylic hemispheres were fabricated and tested to destruction under short term hydrostatic pressure applied on the convex surface. Dome apex displacements were obtained from each specimen and strains were obtained from a selected few. A finite element elastic analysis was performed on one window configuration for two different boundary conditions and the experimentally derived stresses were used to determine which boundary conditions was the best for analytical analysis.


Author(s):  
Holger Graf ◽  
Andre´ Stork

This paper presents a new method for the manipulation of a given CAE domain in view of VR based explorations that enables engineers to interactively inspect and analyze a linear static domain. The interactions can ideally be performed in real-time in order to provide an intuitive impression of the changes to the underlying volumetric domain. We take the approach of element masking, i.e. the blending out of computations resulting from computational overhead for inner nodes, based on the inversion of the stiffness matrix. This allows us to optimize the re-simulation loop and to achieve real-time performance for strain and stress distributions with immediate visualization feedback caused by interactively changing boundary conditions. The novelty of the presented approach is a direct coupling of view dependent simulations and its close linkage to post-processing tasks. This allows engineers to also inspect the changes of the stress field inside of the volume during, e.g. cross sectioning.


2009 ◽  
Vol 87-88 ◽  
pp. 518-523 ◽  
Author(s):  
Jing Li ◽  
Yan He ◽  
Zhen Chao Chen

Based on the Adina finite element analysis software, 3D axisymmetric finite element analysis model of the 205/75R15 PCR tire was established, the steady temperature field of rolling tire was simulated, and the thermal distribution colored cloud diagram of steady-state temperature field of 3D rolling tire which directly shows the temperature distribution of each section of tire was analyzed to offer certain guidance to the improvement of tire structure and rubber formula.


Sign in / Sign up

Export Citation Format

Share Document