THREE-DIMENSIONAL NUMERICAL INVESTIGATION OF EFFECT OF CONVERGENT NOZZLES ON THE ENERGY SEPARATION IN A VORTEX TUBE

2012 ◽  
Vol 30 (02) ◽  
pp. 133-140 ◽  
Author(s):  
N. Pourmahmoud ◽  
A. Hassanzadeh ◽  
S. Rafiee ◽  
M. Rahimi
2013 ◽  
Vol 397-400 ◽  
pp. 205-208
Author(s):  
Wen Chuan Wang ◽  
Xiang Jun Fang ◽  
Shi Long Liu ◽  
Wen Long Sun

This paper aims to investigate fixed composition natural gases including N2, CH4 and C2H4 energy separation effect in vortex tube. Energy separation phenomena of those gases were investigated by means of three-dimensional Computational Fluid Dynamics (CFD) method. Flow fields of natural gases in fixed inlet boundary conditions were simulated. The results main factors were found that affect the energy separation with cold mass fraction being 0.7 and pressure drop ratio being 3.90. At the same time, this paper has illustrated the effects and tendencies of energy separation with gases in the tube under the same cold mass flow fraction and cold pressure ratio. The results show mixture gases total temperature difference effect is unchanged varied with the cold mass fraction; CH4% has no effect on the vortex cold end temperature separation, but varied of CH4% has an influence in total temperature and hot end separation effect; total temperature separation effect of CH4% was divided into two sections, one is0%-80%, and the other 80%-100%.


Author(s):  
Seyed Ehsan Rafiee ◽  
M. M. Sadeghiazad ◽  
Nasser Mostafavinia

The vortex tube (VT) air separator is an invaluable tool which has the ability to separate a high-pressure fluid into the cold and hot fluid streams. The hot tube is a main part of the air separator VT which the energy separation procedure happens along this part. This research has been done to analyze the effect of the convergent angle and cold orifice diameter on the thermal efficiency of a convergent vortex tube (CVT). The CVT is linked to an air pipeline with the fixed pressure of 6.5 bar. The convergent hot tube angle is varied over the range of 1 deg to 9 deg. The consideration of the main angle effect denotes that the highest thermal ability could be achieved at β = 5 deg. The laboratory setup results show this subject that the optimization of the hot tube convergent angle elevates the cooling and heating effectiveness around 32.03% and 26.21%, respectively. Experiments denoted that both cooling capability and heating effectiveness reach the highest magnitudes when the DCold is around 9 mm. After these two stages, the optimized CVT was capable of decreasing and rising air temperatures at the cold and the hot sides up to 9.05 K (42.89%) and 10.48 K (44.74%), respectively. A computational fluid dynamics (CFD) model was employed to predict the performance of the air flow inside the CVT. The numerical investigation was done by full 3D steady-state CFD-simulation using fluent6.3.26. The results show that the agreement between computation predictions and laboratory measurements is fairly good.


2017 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Kiran Dattatraya Devade ◽  
Ashok T. Pise ◽  
Atul R. Urade

The vortex tube is an energy separation device that separates compressed gas stream into a low and a high temperature stream. Present work reports the flow behavior inside the vortex tube for different commonly used fluids with varied properties like Air, He, N2, CO2 and NH3. Flow behavior investigation for three-dimensional short straight-diverging vortex tube is done with CFD code (ANSYS 16.0). Different turbulent models, standard k-epsilon, Realizable k-epsilon and RNG k-epsilon are tested. Realizable k-epsilon model was then used for analysis. Flow behavior of gases with varied multi-atomic number is analyzed and compared with literature. The effect on temperature for N2 is found to be better, followed by He, CO2, Air and NH3. Energy separation for N2 is 46 % higher than all other gases. Energy separation and flow behavior inside vortex tube is analyzed and compared with literature.


2012 ◽  
Vol 16 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Nader Pourmahmoud ◽  
Hassan Zadeh ◽  
Omid Moutaby ◽  
Abdolreza Bramo

In this article computational fluid dynamics (CFD) analysis of a three-dimensional steady state compressible and turbulent flow has been carried out through a vortex tube. The numerical models use the k-? turbulence model to simulate an axisymmetric computational domain along with periodic boundary conditions. The present research has focused on the energy separation and flow field behavior of a vortex tube by utilizing both straight and helical nozzles. Three kinds of nozzles set include of 3 and 6 straight and 3 helical nozzles have been investigated and their principal effects as cold temperature difference was compared. The studied vortex tubes dimensions are kept the same for all models. The numerical values of hot and cold outlet temperature differences indicate the considerable operating role of helical nozzles, even a few numbers of that in comparing with straight nozzles. The results showed that this type of nozzles causes to form higher swirl velocity in the vortex chamber than the straight one. To be presented numerical results in this paper are validated by both available experimental data and flow characteristics such as stagnation point situation and the location of maximum wall temperature as two important facts. These comparisons showed reasonable agreement.


2015 ◽  
Vol 19 (2) ◽  
pp. 619-630 ◽  
Author(s):  
Nader Rahbar ◽  
Mohsen Taherian ◽  
Mostafa Shateri ◽  
Sadegh Valipour

Sign in / Sign up

Export Citation Format

Share Document