scholarly journals Investigation of Air Distribution in Mosque Rooms with Different Angles of Supply and Inlet Velocity

2021 ◽  
Vol 39 (4) ◽  
pp. 1383-1388
Author(s):  
Catur Harsito ◽  
Ariyo Nurachman Setiya Permata

The HVAC (heating, ventilation, and air conditioning) systems utilization has increased in the last decade. It conducts global warming which has an impact on the rising of global temperatures. An excellent air conditioning system will make the room comfortable conditions. This paper aims to investigate the mosque space with a cooling model of wall-mounted air conditioning and the difference in inlet angle and air inlet velocity. The room design was constructed using SolidWorks software. Air distribution observations were created using ANSYS Workbench simulation software. The use of a supply angle of 90° results in an even distribution of air with a low inlet velocity, whereas in conditions of a supply angle of 60° requires a higher inlet speed. Thus, the uniform air distribution is able to be realized by the proper configuration which results an appropriately room temperature and saves energy usage.

2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


2014 ◽  
Vol 493 ◽  
pp. 74-79
Author(s):  
Y.A. Sabtalistia ◽  
S.N.N. Ekasiwi ◽  
B. Iskandriawan

Energy consumption for air conditioning systems (air conditioning system) increased along with the increasing need for fresh air and comfortable in the room especially apartments. FAC system (Floor Air Conditioning) is growing because it is more energy efficient than CAC (Ceiling Air Conditioning) system. However, the position of the AC supply is on the lower level at the FAC system causes draft discomfort becomes greater as air supply closer to the occupants so that thermal comfort can be reduced. Heat mixture of windows, exterior walls, kitchen, and occupants in the studio apartment affect thermal comfort in the room too.This study aims to determine the position of the AC supply which has the best thermal comfort of FAC system in the studio apartment. It can be done by analyzing ADPI (Air Diffusion Performance Index), the distribution of air temperature, wind speed, RH (Relative Humidity), and DR (Draft Risk) to change the position of the AC supply supported by CFD (Computational Fluid Dynamics) simulation.This result prove that AC position 2 (on wall near the kitchen) is more comfortable than AC position 1 (on the bathroom wall) because AC position 2 away from occupied areas, thereby reducing the occurrence of draught discomfort.


2005 ◽  
Vol 16 (4) ◽  
pp. 59-66 ◽  
Author(s):  
V Mittal ◽  
KS Kasana ◽  
NS Thakur

An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance.


Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


2019 ◽  
Vol 95 (3) ◽  
pp. 296-301
Author(s):  
U. A. Rakhmanin ◽  
S. E. Shibanov ◽  
Sergey V. Kozulya

Purpose of work is a compilation of data about the microflora which colonizes a split-system, with the aim of selection of sanitary-indicative microorganisms, whose presence in the sample would indicate to the need for cleaning and disinfection of split-systems. Materials and methods. In the article there were used data of five years author’s scientific inquiry, related to the prevention of respiratory diseases, associated with the usage of a local air conditioning systems. We also use the data from the literature. Results. For selection of “indicative” microorganisms, we proposed the usage of nine criteria, each of them have numeric value from 0 to 3 points (risk for health, prevalence rate of the disease, epidemiological link, speed of split system’s colonization, difficulty of cultivation, resistance in the environment, resistance to disinfectants, frequency of detection in home air conditioning systems, frequency of detection in air conditioning systems of public buildings). After the calculation Pseudomonas aeruginosa and Staphylococcus aureus received maximal score (20 points). Therefore, these two types of bacteria are indicative microorganisms. The detection of these microorganisms in split systems will indicate to the contamination of air-conditioning system. This microflora also is a criterion of cleaning and disinfection quality - presence of these microorganisms in the samples after this process will mean that the processing of air conditioning systems was performed poorly. Conclusions. Split systems are very faster colonized by conditionally pathogenic and pathogenic microflora. To prevent the possible hazard for population’s health it is necessary to develop the normative base, according to which sanitary-and-hygienic control over the split-systems working must be carried out. Proposed criteria suggest that Pseudomonas aeruginosa and Staphylococcus aureus are indicative microorganisms, and it’s identification in the air-conditioning system would mean risk for health and necessity for cleaning and disinfection.


Author(s):  
Ghezlane Halhoul Merabet ◽  
Mohamed Essaaidi ◽  
Driss Benhaddou

Thermal comfort is closely related to the evaluation of heating, ventilation, and air conditioning systems. It can be seen as the result of the perception of the occupants of a given environment, and it is the product of the interaction of a number of personal and environmental factors. Otherwise, comfort issues still do not play an important role in the daily operation of commercial buildings. However, in the workplace, local quality effects, in addition to the health, the productivity that has a significant impact on the performance of the activities. In this regard, researchers have conducted, for decades, investigations related to thermal comfort and indoor environments, which includes developing models and indices through experimentations to establish standards to evaluate comfort and factors and set-up parameters for heating, ventilation, and air conditioning systems. However, to our best knowledge, most of the research work reported in the literature deals only with parameters that are not dynamically tracked. This work aims to propose a prototype for comfort measuring through a wireless sensor network and then presenting a model for thermal comfort prediction. The developed model can be used to set up a heating, ventilation, and air conditioning system to meet the expected comfort level. In particular, the obtained results show that there is a strong correlation between users’ comfort and variables such as age, gender, and body mass index as a function of height and weight.


2019 ◽  
Vol 111 ◽  
pp. 04042
Author(s):  
Nicolás Ablanque ◽  
Santiago Torras ◽  
Carles Oliet ◽  
Joaquim Rigola ◽  
Carlos-David Pérez-Segarra

The simulation of HVAC systems is a powerful tool to improve the energy efficiency in buildings. The modelling of such systems faces several obstacles due to both the physical phenomenology present and the numerical resolution difficulties. The present work is an attempt to develop a robust, fast, and accurate model for HVAC systems that can interact with the other relevant systems involved in buildings thermal management. The whole system model has been developed in the form of libraries under the Modelica language to exploit its advantageous characteristics: object-oriented programming, equationbased modelling, and handling of multi-physics. The global resolution is carried out dynamically so that not only steady-state predictions can be conducted but also control strategies can be studied over meaningful periods of time. This latter aspect is crucial for optimizing energy savings. The libraries include models for all the system individual components such as pumps, compressors or heat exchangers (operating with twophase flows and/or moist air) and also models assemblies to account for vapour compression units and liquid circuits. An illustrative example of an indirect air conditioning system is detailed in the present work in order to highlight the model potential.


2013 ◽  
Vol 773 ◽  
pp. 883-888 ◽  
Author(s):  
Hamid Nawaz ◽  
Yan Sheng Yuan

The focus of this work is to simulate and optimize thermal comfort in a ship air-conditioning system by evaluating the performance of different types of air supply outlets. Thermal comfort analyses were performed in Solidworks Flow Simulation software by changing the number, type and position of air supply outlets and the comfort was optimized by evaluating the values of temperature, velocity, PMV (Predicted mean vote) & PPD (Predicted Percentage Dissatisfied). It was concluded from the results obtained from different analyses that air supply outlet is a vital part in any type of HVAC (Heating ventilation & air conditioning) system design, as its number, type and position has significant effect on the air distribution and thermal comfort in a subject space. It was also deduced that improper selection of air supply outlet can result in room air stagnation, unacceptable temperature gradients, and undesirable velocities in the occupied zone that may lead to occupant discomfort. Through this work the importance and effectiveness of CFD (computational fluid dynamics) design tools, in the design & optimization of HVAC systems has been evaluated and it was concluded that CFD design software like Solidworks flow simulation provide an excellent provision to validate different aspects of HVAC design before actual construction.


Sign in / Sign up

Export Citation Format

Share Document