scholarly journals Automated Systems for Detection of COVID-19 Using Chest X-ray Images and Lightweight Convolutional Neural Networks

Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Amin Alqudah

Abstract Since December 2019, the appearance of an outbreak of a novel coronavirus disease namely COVID-19 and which is previously known as 2019-nCoV. COVID-19 is a type of coronavirus that leads to the general destruction of respiratory systems and a severe respiratory symptom which are associated with highly Intensive Care Unit (ICU) admissions and death. Like any disease, the early diagnosis of coronavirus leads to limit its wide-spreading and increases the recovery rates of patients. The gold standard of COVID-19 detection is the real-time reverse transcription-polymerase chain reaction (RT-PCR) which has been used by the clinician to discover the presence or absence of this type of virus. The clinicians report that this technique has a low positive rate in the early stage of this disease. Based on this, the clinicians were forced to use another way to help in the early diagnosis of COVID-2019. So, the clinician's attention moved towards the medical imaging modalities especially the computed Tomography (CT) and X-ray chest images. Both modalities show that there is a change in the lungs in the case of COVID-19 that is different from any other type of pneumonic disease. Therefore, this research targeted toward employing different Artificial Intelligence (AI) techniques to propose a system for early detection of COVID-19 using chest X-ray images. These images are classified using different AI algorithms and a combination of them, then their performance was evaluated to recognize the best of them. These algorithms include a convolutional neural network (CNN), Softmax, support vector machine (SVM), Random Forest, and K nearest neighbor (KNN). Here CNN is into two scenarios, the first one to classify the X-ray images using a softmax classifier, and the second one to extract automated features from the images and pass these features to other classifiers (SVM, RFF, and KNN). According to the results, the performance of all classifiers is good and most of them record accuracy, sensitivity, specificity, and precision of more than 98%.

Teknika ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 96-103
Author(s):  
Mohammad Farid Naufal ◽  
Selvia Ferdiana Kusuma ◽  
Kevin Christian Tanus ◽  
Raynaldy Valentino Sukiwun ◽  
Joseph Kristiano ◽  
...  

Kondisi pandemi global Covid-19 yang muncul diakhir tahun 2019 telah menjadi permasalahan utama seluruh negara di dunia. Covid-19 merupakan virus yang menyerang organ paru-paru dan dapat mengakibatkan kematian. Pasien Covid-19 banyak yang telah dirawat di rumah sakit sehingga terdapat data citra chest X-ray paru-paru pasien yang terjangkit Covid-19. Saat ini sudah banyak peneltian yang melakukan klasifikasi citra chest X-ray menggunakan Convolutional Neural Network (CNN) untuk membedakan paru-paru sehat, terinfeksi covid-19, dan penyakit paru-paru lainnya, namun belum ada penelitian yang mencoba membandingkan performa algoritma CNN dan machine learning klasik seperti Support Vector Machine (SVM), dan K-Nearest Neighbor (KNN) untuk mengetahui gap performa dan waktu eksekusi yang dibutuhkan. Penelitian ini bertujuan untuk membandingkan performa dan waktu eksekusi algoritma klasifikasi K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan CNN  untuk mendeteksi Covid-19 berdasarkan citra chest X-Ray. Berdasarkan hasil pengujian menggunakan 5 Cross Validation, CNN merupakan algoritma yang memiliki rata-rata performa terbaik yaitu akurasi 0,9591, precision 0,9592, recall 0,9591, dan F1 Score 0,959 dengan waktu eksekusi rata-rata sebesar 3102,562 detik.


Author(s):  
Ihssan S. Masad ◽  
Amin Alqudah ◽  
Ali Mohammad Alqudah ◽  
Sami Almashaqbeh

<span>Pneumonia is a major cause for the death of children. In order to overcome the subjectivity and time consumption of the traditional detection of pneumonia from chest X-ray images; this work hypothesized that a hybrid deep learning system that consists of a convolutional neural network (CNN) model with another type of classifiers will improve the performance of the detection system. Three types of classifiers (support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF) were used along with the traditional CNN classification system (Softmax) to automatically detect pneumonia from chest X-ray images. The performance of the hybrid systems was comparable to that of the traditional CNN model with Softmax in terms of accuracy, precision, and specificity; except for the RF hybrid system which had less performance than the others. On the other hand, KNN hybrid system had the best consumption time, followed by the SVM, Softmax, and lastly the RF system. However, this improvement in consumption time (up to 4 folds) was in the expense of the sensitivity. A new hybrid artificial intelligence methodology for pneumonia detection has been implemented using small-sized chest X-ray images. The novel system achieved a very efficient performance with a short classification consumption time.</span>


Author(s):  
Rajni Rajni ◽  
Amandeep Amandeep

<p>Diabetes is a major concern all over the world. It is increasing at a fast pace. People can avoid diabetes at an early stage without any test. The goal of this paper is to predict the probability of whether the person has a risk of diabetes or not at an early stage. This would lead to having a great impact on their quality of human life. The datasets are Pima Indians diabetes and Cleveland coronary illness and consist of 768 records. Though there are a number of solutions available for information extraction from a huge datasets and to predict the possibility of having diabetes, but the accuracy of their mining process is far from accurate. For achieving highest accuracy, the issue of zero probability which is generally faced by naïve bayes analysis needs to be addressed suitably. The proposed framework RB-Bayes aims to extract the required information with high accuracy that could survive the problem of zero probability and also configure accuracy with other methods like Support Vector Machine, Naive Bayes, and K Nearest Neighbor. We calculated mean to handle missing data and calculated probability for yes (positive) and no (negative). The highest value between yes and no decide the value for the tuple. It is mostly used in text classification. The outcomes on Pima Indian diabetes dataset demonstrate that the proposed methodology enhances the precision as a contrast with other regulated procedures. The accuracy of the proposed methodology large dataset is 72.9%.</p>


2021 ◽  
Vol 10 (3) ◽  
pp. 1262-1270
Author(s):  
Rizal Maulana ◽  
Alfatehan Arsya Baharin ◽  
Hurriyatul Fitriyah

The lungs are the main organs in the respiratory system that have a function as a place for exchange of oxygen and carbon dioxide. Due to the importance of lung function, indications of lung disorders must be detected and diagnosed early. Research on the classification of lung conditions generally uses chest x-ray image data. Where a time-consuming procedure is needed to obtain the data. In this research, an embedded system to diagnose lung conditions was designed. The system was made to be easy to use independently and provides real-time examination results. This system uses parameters of body temperature, oxygen saturation, fingernail color and lung volume in classifying lung conditions. There are three conditions that can be classified by the system, that is healthy lungs, pneumonia and tuberculosis. The k-nearest neighbor method was used in the classification process in the designed system. The dataset used was 51 data obtained from the hospital. Each data already has a label in the form of lung condition based on the doctor’s diagnosis. The proposed system has an accuracy of 88.24% in classifying lung conditions.


2021 ◽  
Vol 11 (24) ◽  
pp. 11902
Author(s):  
Sonain Jamil ◽  
MuhibUr Rahman

Novel coronavirus, known as COVID-19, is a very dangerous virus. Initially detected in China, it has since spread all over the world causing many deaths. There are several variants of COVID-19, which have been categorized into two major groups. These groups are variants of concern and variants of interest. Variants of concern are more dangerous, and there is a need to develop a system that can detect and classify COVID-19 and its variants without touching an infected person. In this paper, we propose a dual-stage-based deep learning framework to detect and classify COVID-19 and its variants. CT scans and chest X-ray images are used. Initially, the detection is done through a convolutional neural network, and then spatial features are extracted with deep convolutional models, while handcrafted features are extracted from several handcrafted descriptors. Both spatial and handcrafted features are combined to make a feature vector. This feature vector is called the vocabulary of features (VoF), as it contains spatial and handcrafted features. This feature vector is fed as an input to the classifier to classify different variants. The proposed model is evaluated based on accuracy, F1-score, specificity, sensitivity, specificity, Cohen’s kappa, and classification error. The experimental results show that the proposed method outperforms all the existing state-of-the-art methods.


Diagnostics ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Raúl Santiago-Montero ◽  
Humberto Sossa ◽  
David A. Gutiérrez-Hernández ◽  
Víctor Zamudio ◽  
Ignacio Hernández-Bautista ◽  
...  

Breast cancer is a disease that has emerged as the second leading cause of cancer deaths in women worldwide. The annual mortality rate is estimated to continue growing. Cancer detection at an early stage could significantly reduce breast cancer death rates long-term. Many investigators have studied different breast diagnostic approaches, such as mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have limitations, such as being expensive, time consuming and not suitable for women of all ages. Proposing techniques that support the effective medical diagnosis of this disease has undoubtedly become a priority for the government, for health institutions and for civil society in general. In this paper, an associative pattern classifier (APC) was used for the diagnosis of breast cancer. The rate of efficiency obtained on the Wisconsin breast cancer database was 97.31%. The APC’s performance was compared with the performance of a support vector machine (SVM) model, back-propagation neural networks, C4.5, naive Bayes, k-nearest neighbor (k-NN) and minimum distance classifiers. According to our results, the APC performed best. The algorithm of the APC was written and executed in a JAVA platform, as well as the experimental and comparativeness between algorithms.


Author(s):  
Reza Safdari ◽  
Peyman Rezaei-Hachesu ◽  
Marjan GhaziSaeedi ◽  
Taha Samad-Soltani ◽  
Maryam Zolnoori

Medical data mining intends to solve real-world problems in the diagnosis and treatment of diseases. This process applies various techniques and algorithms which have different levels of accuracy and precision. The purpose of this article is to apply data mining techniques to the diagnosis of asthma. Sensitivity, specificity and accuracy of K-nearest neighbor, Support Vector Machine, naive Bayes, Artificial Neural Network, classification tree, CN2 algorithms, and related similar studies were evaluated. ROC curves were plotted to show the performance of the authors' approach. Support vector machine (SVM) algorithms achieved the highest accuracy at 98.59% with a sensitivity of 98.59% and a specificity of 98.61% for class 1. Other algorithms had a range of accuracy greater than 87%. The results show that the authors can accurately diagnose asthma approximately 98% of the time based on demographics and clinical data. The study also has a higher sensitivity when compared to expert and knowledge-based systems.


2021 ◽  
pp. 20210131
Author(s):  
Tetsuya Tsujikawa ◽  
Masaki Anzai ◽  
Yukihiro Umeda ◽  
Hideaki Tsuyoshi ◽  
Nobuyuki Kosaka ◽  
...  

Since the outbreak of pneumonia caused by a novel coronavirus (SARS-CoV-2) named Coronavirus disease 2019 (COVID-19) in China, researchers have reported the fluorodeoxyglucose positron emission tomography/CT (FDG PET/CT) manifestations of COVID-19 infection. We present a 37-year-old female with early-stage cervical cancer and fever without a focus who had negative SARS-CoV-2 antigen test and chest X-ray results. FDG PET/MRI performed for preoperative evaluation incidentally detected pneumonia showing high FDG uptake and diffusion-weighted imaging signals in right lung base. She retested positive for SARS-CoV-2 and was diagnosed as having COVID-19 pneumonia. Whole-body PET/MRI can provide multi functional images and could be useful for evaluating the pathophysiology of COVID-19.


Author(s):  
Keke Zhang ◽  
Lei Zhang ◽  
Qiufeng Wu

The cherry leaves infected by Podosphaera pannosa will suffer powdery mildew, which is a serious disease threatening the cherry production industry. In order to identify the diseased cherry leaves in early stage, the authors formulate the cherry leaf disease infected identification as a classification problem and propose a fully automatic identification method based on convolutional neural network (CNN). The GoogLeNet is used as backbone of the CNN. Then, transferred learning techniques are applied to fine-tune the CNN from pre-trained GoogLeNet on ImageNet dataset. This article compares the proposed method against three traditional machine learning methods i.e., support vector machine (SVM), k-nearest neighbor (KNN) and back propagation (BP) neural network. Quantitative evaluations conducted on a data set of 1,200 images collected by smart phones, demonstrates that the CNN achieves best precise performance in identifying diseased cherry leaves, with the testing accuracy of 99.6%. Thus, a CNN can be used effectively in identifying the diseased cherry leaves.


Author(s):  
Mohammed K. Binjaah ◽  
Abdullah Aljuhani ◽  
Umar Alqasemi

Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding physicians in the detection of liver tumors at early stage. In this paper, the CADe system will be built which has the ability to detect the abnormal tumor inside the liver. In order to create that system, different types of classifiers must be implemented. In our CADe system, a support vector machine (SVM) and K-Nearest Neighbor (KNN) will be used as classifiers. A total number of 120 images including the normal and abnormal cases were collected. Initially, the features will be extracted from database images in order to distinguish between the classes of those liver tumors. Then, by using SVM and KNN the images will be classified into two classes normal and abnormal cases. The paper reveals that SVM and KNN, which demonstrated 100 percent precision, 100 percent sensitivity, and 100 percent specificity, were the best classifiers.


Sign in / Sign up

Export Citation Format

Share Document