scholarly journals Comparative Analysis of Texture Patterns on Mammograms for Classification

2021 ◽  
Vol 38 (2) ◽  
pp. 379-386
Author(s):  
Nagadevi Darapureddy ◽  
Nagaprakash Karatapu ◽  
Tirumala Krishna Battula

Breast cancer is a cancerous tumor that arrives within the tissues of the breast. Women are mostly attacked than men. To detect early cancer medical specialists, suggest mammography for screening. Algorithms in Machine learning were executed on mammogram images to classify whether the tissues are deleterious or not. An analysis is done based on the texture feature extraction using different techniques like Frequency decoded local binary pattern (FDLBP), Local Bit-plane Decoded Pattern (LBDP), Local Diagonal Extrema Pattern (LDEP), Local Directional Order Pattern (LDOP), Local Wavelet Pattern (LWP). The features extracted are tested on 322 images from MIA’s database of three different classes. The algorithms in Machine learning like K-Nearest Neighbor classifier (KNN), Support vector classifier (SVC), Decision Tree classifier (DTC), Random Forest classifier (RFC), AdaBoost classifier (AC), Gradient Boosting classifier (GBC), Gaussian Naive Bayes classifier (GNB), Linear Discriminant Analysis classifier (LDA), Quadratic Discriminant Analysis classifier (QDA) were used to evaluate the accuracy of classification. This paper examines the comparison of accuracy using different texture features. KNN algorithm with LDEP for texture feature extraction gives classification accuracy of 64.61%, SVC with all the texture patterns mentioned gives classification accuracy of 63.07%, DTC with FDLBP, LBDP gives classification accuracy of 47.69, RFC with LBDP and AC with LDOP and GBC with FDLBP gives 61.53% classification accuracy, GNB and LDA with FDLBP gives 60% and 63.07% classification accuracy respectively, QDA with LBDP gives 64.61 classification accuracy. Of all the Algorithms support vector classifier gives good accuracy results with all the texture patterns mentioned.

Deriving the methodologies to detect heart issues at an earlier stage and intimating the patient to improve their health. To resolve this problem, we will use Machine Learning techniques to predict the incidence at an earlier stage. We have a tendency to use sure parameters like age, sex, height, weight, case history, smoking and alcohol consumption and test like pressure ,cholesterol, diabetes, ECG, ECHO for prediction. In machine learning there are many algorithms which will be used to solve this issue. The algorithms include K-Nearest Neighbour, Support vector classifier, decision tree classifier, logistic regression and Random Forest classifier. Using these parameters and algorithms we need to predict whether or not the patient has heart disease or not and recommend the patient to improve his/her health.


Author(s):  
Abbas F. H. Alharan ◽  
Hayder K. Fatlawi ◽  
Nabeel Salih Ali

<p>Computer vision and pattern recognition applications have been counted serious research trends in engineering technology and scientific research content. These applications such as texture image analysis and its texture feature extraction. Several studies have been done to obtain accurate results in image feature extraction and classifications, but most of the extraction and classification studies have some shortcomings. Thus, it is substantial to amend the accuracy of the classification via minify the dimension of feature sets. In this paper, presents a cluster-based feature selection approach to adopt more discriminative subset texture features based on three different texture image datasets. Multi-step are conducted to implement the proposed approach. These steps involve texture feature extraction via Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Gabor filter. The second step is feature selection by using K-means clustering algorithm based on five feature evaluation metrics which are infogain, Gain ratio, oneR, ReliefF, and symmetric. Finally, K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers are used to evaluate the proposed classification performance and accuracy. Research achieved better classification accuracy and performance using KNN and NB classifiers that were 99.9554% for Kelberg dataset and 99.0625% for SVM in Brodatz-1 and Brodatz-2 datasets consecutively. Conduct a comparison to other studies to give a unified view of the quality of the results and identify the future research directions.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261040
Author(s):  
Zazilah May ◽  
M. K. Alam ◽  
Nazrul Anuar Nayan ◽  
Noor A’in A. Rahman ◽  
Muhammad Shazwan Mahmud

Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classifiers. Findings of our proposed machine learning approach confirm that it can be effectively utilized for corrosion detection and severity assessment in SHM applications.


Author(s):  
Premkumar Borugadda ◽  
R. Lakshmi ◽  
Surla Govindu

Computer vision has been demonstrated as state-of-the-art technology in precision agriculture in recent years. In this paper, an Alex net model was implemented to identify and classify cotton leaf diseases. Cotton Dataset consists of 2275 images, in which 1952 images were used for training and 324 images were used for validation. Five convolutional layers of the AlexNet deep learning technique is applied for features extraction from raw data. They were remaining three fully connected layers of AlexNet and machine learning classification algorithms such as Ada Boost Classifier (ABC), Decision Tree Classifier (DTC), Gradient Boosting Classifier (GBC). K Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest Classifier (RFC), and Support Vector Classifier (SVC) are used for classification. Three fully connected layers of Alex Net provided the best performance model with a 94.92% F1_score at the training time of about 51min.  


Abstract-Machine learning is used extensively in medical diagnosis to predict the existence of diseases. Existing classification algorithms are frequently used for automatic detection of diseases. But most of the times, they do not give 100% accurate results. Boosting techniques are often used in Machine learning to get maximum classification accuracy. Though several boosting techniques are in place but the XGBoost algorithm is doing extremely well for some selected data sets. Building an XGBoost model is simple but improving the model by tuning the parameters is a challenging task. There are many parameters to the XGBoost algorithm and deciding what set of parameters to tune and the ideal values of these parameters is a cumbersome and time taking task. We, in this paper, tuned the XGBoost model for the first time for Liver disease prediction and got 100% accuracy by tuning some of the hyper parameters. It is observed that the model proposed by us exhibited highest classification accuracy compared to all other models built till now by machine learning researchers and some regularly used algorithms like Support Vector Machines (SVM), Naive Bayes (NB), C4.5 Decision tree, Random Belief Networks, Alternating Decision Trees (ADT) experimented by us.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1543
Author(s):  
Fernando Mateo ◽  
Andrea Tarazona ◽  
Eva María Mateo

Unifloral honeys are highly demanded by honey consumers, especially in Europe. To ensure that a honey belongs to a very appreciated botanical class, the classical methodology is palynological analysis to identify and count pollen grains. Highly trained personnel are needed to perform this task, which complicates the characterization of honey botanical origins. Organoleptic assessment of honey by expert personnel helps to confirm such classification. In this study, the ability of different machine learning (ML) algorithms to correctly classify seven types of Spanish honeys of single botanical origins (rosemary, citrus, lavender, sunflower, eucalyptus, heather and forest honeydew) was investigated comparatively. The botanical origin of the samples was ascertained by pollen analysis complemented with organoleptic assessment. Physicochemical parameters such as electrical conductivity, pH, water content, carbohydrates and color of unifloral honeys were used to build the dataset. The following ML algorithms were tested: penalized discriminant analysis (PDA), shrinkage discriminant analysis (SDA), high-dimensional discriminant analysis (HDDA), nearest shrunken centroids (PAM), partial least squares (PLS), C5.0 tree, extremely randomized trees (ET), weighted k-nearest neighbors (KKNN), artificial neural networks (ANN), random forest (RF), support vector machine (SVM) with linear and radial kernels and extreme gradient boosting trees (XGBoost). The ML models were optimized by repeated 10-fold cross-validation primarily on the basis of log loss or accuracy metrics, and their performance was compared on a test set in order to select the best predicting model. Built models using PDA produced the best results in terms of overall accuracy on the test set. ANN, ET, RF and XGBoost models also provided good results, while SVM proved to be the worst.


Sign in / Sign up

Export Citation Format

Share Document