scholarly journals Rice growth vegetation index 2 for improving estimation of rice plant phenology in costal ecosystems

2021 ◽  
Vol 45 (3) ◽  
pp. 438-448
Author(s):  
K. Choudhary ◽  
W. Shi ◽  
Y. Dong

Crop growth is one of the most important parameters of a crop and its knowledge before harvest is essential to help farmers, scientists, governments and agribusiness. This paper provides a novel demonstration of the use of freely available Sentinel-2 data to estimate rice crop growth in a single year. Sentinel 2 data provides frequent and consistent information to facilitate coastal monitoring from field scales. The aims of this study were to modify the rice growth vegetation index to improve rice growth phenology in the coastal areas. The rice growth vegetation index 2 is the best vegetation index, compared with 11 vegetation indices, plant height and biomass. The results demonstrate that the coefficient of rice growth vegetation index 2 was 0.83, has the highest correlation with plant height. Rice growth vegetation index 2 is more appropriate for enhancing and obtaining rice phenology information. This study analyses the best spectral vegetation indices for estimating rice growth.

Author(s):  
Foteini ANGELOPOULOU ◽  
Evangelos ANASTASIOU ◽  
Spyros FOUNTAS ◽  
Dimitrios BILALIS

A field experiment was conducted in Southern Greece to assess Normalized Difference Vegetation Index (NDVI) and Red-Edge Normalized Difference Vegetation Index (NDRE) in estimating Camelina’s crop growth and yield parameters under different tillage systems (conventional and minimum tillage) and organic fertilization types (compost, vermicompost and untreated control). A proximal canopy sensor was used to measure the aforementioned Spectral Vegetation Indices (SVIs) at different days after sowing (DAS). Camelina presented the highest values of NDVI and NDRE under compost fertilization (0.63 and 0.22 accordingly) and minimum tillage system (0.50 and 0.18 accordingly). Additionally, the highest correlations between the measured crop parameters and NDVI, NDRE were achieved at leaf development to early flowering stage. Moreover, NDRE presented the highest correlation with seed yield (R2=0.60, p<0.05) and thus it is suggested for estimating Camelina’s productivity instead of NDVI. Finally, further research is needed for adopting the use of remote sensing technologies on predicting Camelina’s crop growth and yield.


2020 ◽  
Vol 12 (16) ◽  
pp. 2654
Author(s):  
Jae-Hyun Ryu ◽  
Hoejeong Jeong ◽  
Jaeil Cho

Spectral reflectance-based vegetation indices have sensitive characteristics to crop growth and health conditions. The performance of each vegetation index to a certain condition is different and needs to be interpreted, correspondingly. This study aimed to assess the most suitable vegetation index to identify the crop response against elevated air temperatures, heat stress, and herbicide damage. The spectral reflectance, yield components, and growth parameters such as plant height, leaf area index (LAI), and above-ground dry matter of paddy rice, which was cultivated in a temperature gradient field chamber to simulate global warming conditions, were observed from 2016 to 2018. The relationships between the vegetation indices and the crop parameters were assessed considering stress conditions. The normalized difference vegetation index (NDVI) represented the changes in plant height (R-square = 0.93) and the LAI (R-square = 0.901) before the heading stage. Furthermore, the NDVI and the cumulative growing degree days had a Sigmoid curve and an R-square value of 0.937 under the normal growth case, but it decreased significantly in the herbicide damage case. This characteristic was useful for detecting the damaged crop growth condition. Additionally, to estimate the grain yield of paddy rice, the medium resolution imaging spectrometer (MERIS) terrestrial chlorophyll index was better: R-square = 0.912; root mean square error = 95.69 g/m2. Photochemical reflectance index was sensitive to physiological stress caused by the heatwave, and it decreased in response to extremely high air temperatures. These results will contribute towards determining vegetation indices under stress conditions and how to effectively utilize them.


Author(s):  
P. Ghosh ◽  
D. Mandal ◽  
A. Bhattacharya ◽  
M. K. Nanda ◽  
S. Bera

<p><strong>Abstract.</strong> Spatio-temporal variability of crop growth descriptors is of prime importance for crop risk assessment and yield gap analysis. The incorporation of three bands (viz., B5, B6, B7) in ‘red-edge’ position (i.e., 705<span class="thinspace"></span>nm, 740<span class="thinspace"></span>nm, 783<span class="thinspace"></span>nm) in Sentinel-2 with 10&amp;ndash;20<span class="thinspace"></span>m spatial resolution images with five days revisit period have unfolded opportunity for meticulous crop monitoring. In the present study, the potential of Sentinel-2 have been appraised for monitoring phenological stages of potato over Bardhaman district in the state of West Bengal, India. Due to the competency of Vegetation indices (VI) to evaluate the status of crop growth; we have used the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Index45 (NDI45) for crop monitoring. Time series analysis of the VIs exhibited increasing trend as the crop started approaching maturity and attained a maximum value during the tuber development stage and started decreasing as the crop advances to senescence. Inter-field variability of VIs highlighted the need of crop monitoring at high spatial resolution. Among the three vegetation indices, the GNDVI (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.636), NDVI (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.620) had the highest correlation with biomass and Plant Area Index (PAI), respectively. NDI45 had comparatively a lower correlation (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.572 and 0.585 for PAI and biomass, respectively) with both parameters as compared to other two indices. It is interesting to note that the use of Sentinel-2 Green band (B3) instead of the Red band (B4) in GNDVI resulted in 2.5% increase of correlation with biomass. However, the improvement in correlations between NDI45 with crop biophysical parameters is not apparent in this particular study with the inclusion of the Vegetation Red Edge band (B5) in VI. Nevertheless, the strong correlation of VIs with biomass and PAI asserted proficiency of Sentinel-2 for crop monitoring and potential for crop biophysical parameter retrieval with optimum accuracy.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 13 (11) ◽  
pp. 2060
Author(s):  
Trylee Nyasha Matongera ◽  
Onisimo Mutanga ◽  
Mbulisi Sibanda ◽  
John Odindi

Land surface phenology (LSP) has been extensively explored from global archives of satellite observations to track and monitor the seasonality of rangeland ecosystems in response to climate change. Long term monitoring of LSP provides large potential for the evaluation of interactions and feedbacks between climate and vegetation. With a special focus on the rangeland ecosystems, the paper reviews the progress, challenges and emerging opportunities in LSP while identifying possible gaps that could be explored in future. Specifically, the paper traces the evolution of satellite sensors and interrogates their properties as well as the associated indices and algorithms in estimating and monitoring LSP in productive rangelands. Findings from the literature revealed that the spectral characteristics of the early satellite sensors such as Landsat, AVHRR and MODIS played a critical role in the development of spectral vegetation indices that have been widely used in LSP applications. The normalized difference vegetation index (NDVI) pioneered LSP investigations, and most other spectral vegetation indices were primarily developed to address the weaknesses and shortcomings of the NDVI. New indices continue to be developed based on recent sensors such as Sentinel-2 that are characterized by unique spectral signatures and fine spatial resolutions, and their successful usage is catalyzed with the development of cutting-edge algorithms for modeling the LSP profiles. In this regard, the paper has documented several LSP algorithms that are designed to provide data smoothing, gap filling and LSP metrics retrieval methods in a single environment. In the future, the development of machine learning algorithms that can effectively model and characterize the phenological cycles of vegetation would help to unlock the value of LSP information in the rangeland monitoring and management process. Precisely, deep learning presents an opportunity to further develop robust software packages such as the decomposition and analysis of time series (DATimeS) with the abundance of data processing tools and techniques that can be used to better characterize the phenological cycles of vegetation in rangeland ecosystems.


2017 ◽  
pp. 21-30 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Josep Adroher ◽  
Júnior Melo Damian ◽  
Nicola Di Virgilio ◽  
Gloria Falsone ◽  
...  

Assessing the spatial variation of soil and crop properties is the basis for site specific management of crop practices in precision agriculture applications. To this aim, proximal and remote spectral vegetation indices are increasingly replacing soil analysis. In this study the spatial variation of soil properties, proximal and remote spectral vegetation indices were compared in a winter wheat (Triticum aestivum L.) crop grown in a 4.15 ha field in northern Italy. Soil analysis (particle size distribution, pH, carbonates, C, total N, available P, exchangeable cations and electrical conductivity) was geo-referentially carried out; the proximal indices chlorophyll content by N-Tester and normalised difference vegetation index through GreenSeeker were determined in three dates during stem elongation; the remote indices PurePixelTM chlorophyll index and PurePixelTM vegetation index were determined through the Landsat 8 satellite in three dates during the same wheat stage. Dry biomass yield (DBY), grain yield (GY) and yield components were determined at harvest. Soil, proximal and remote data were submitted to principal component analysis (PCA), and the retained PCs were clustered to delineate areas at low, intermediate and high yield potential, based on soil parameters (CLUsp), proximal (CLUpi), and remote vegetation indices (CLUri). DBY and GY were significantly correlated with several soil parameters and vegetation indices. Spatial distribution of soil and crop data consistently depicted a low performing area (GY<3 Mg ha–1) and a high performing one (GY>8 Mg ha–1). CLUsp determined a lower GY difference between low and high performing area (+60%), compared to CLUpi and CLUri (almost +100%). In CLUsp and CLUpi the low and high performing area were of similar size (25 and 29% for the two respective areas in CLUsp; 25 and 33% in CLUpi), whereas in CLUri they were quite different (16 and 46%). Lastly, yield potential levels determined by vegetation indices (CLUpi and CLUri) exhibited a better degree of agreement with DBY and GY levels, than soil parameters (CLUsp). In exchange for this, the above referred soil parameters are quite consistent in time, allowing soil data to be used for more years. On concluding, PCA followed by clustering resulted in a robust delineation of field areas at different yield potential. This is the premise for developing research driven strategies of practical use.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hung Nguyen Trong ◽  
The Dung Nguyen ◽  
Martin Kappas

This paper aims to (i) optimize the application of multiple bands of satellite images for land cover classification by using random forest algorithms and (ii) assess correlations and regression of vegetation indices of a better-performed land cover classification image with vertical and horizontal structures of tropical lowland forests in Central Vietnam. In this study, we used Sentinel-2 and Landsat-8 to classify seven land cover classes of which three forest types were substratified as undisturbed, low disturbed, and disturbed forests where forest inventory of 90 plots, as ground-truth, was randomly sampled to measure forest tree parameters. A total of 3226 training points were sampled on seven land cover types. The performance of Landsat-8 showed out-of-bag error of 31.6%, overall accuracy of 68%, kappa of 67.5%, while Sentinel-2 showed out-of-bag error of 14.3% and overall accuracy of 85.7% and kappa of 83%. Ten vegetation indices of the better-performed image were extracted to find out (i) the correlation and regression of horizontal and vertical structures of trees and (ii) assess the variation values between ground-truthing plots and training sample plots in three forest types. The result of the t test on vegetation indices showed that six out of ten vegetation indices were significant at p<0.05. Seven vegetation indices had a correlation with the horizontal structure, but four vegetation indices, namely, Enhanced Vegetation Index, Perpendicular Vegetation Index, Difference Vegetation Index, and Transformed Normalized Difference Vegetation Index, had better correlations r = 0.66, 0.65, 0.65, 0.63 and regression results were of R2 = 0.44, 0.43, 0.43, and 0.40, respectively. The correlations of tree height were r = 0.46, 0.43, 0.43, and 0.49 and its regressions were of R2 = 0.21, 0.19, 0.18, and 0.24, respectively. The results show the possibility of using random forest algorithm with Sentinel-2 in forest type classification in line with vegetation indices application.


2019 ◽  
Vol 11 (7) ◽  
pp. 799 ◽  
Author(s):  
Rachel Lugassi ◽  
Eli Zaady ◽  
Naftaly Goldshleger ◽  
Maxim Shoshany ◽  
Alexandra Chudnovsky

Frequent, region-wide monitoring of changes in pasture quality due to human disturbances or climatic conditions is impossible by field measurements or traditional ecological surveying methods. Remote sensing imagery offers distinctive advantages for monitoring spatial and temporal patterns. The chemical parameters that are widely used as indicators of ecological quality are crude protein (CP) content and neutral detergent fiber (NDF) content. In this study, we investigated the relationship between CP, NDF, and reflectance in the visible–near-infrared–shortwave infrared (VIS–NIR–SWIR) spectral range, using field, laboratory measurements, and satellite imagery (Sentinel-2). Statistical models were developed using different calibration and validation data sample sets: (1) a mix of laboratory and field measurements (e.g., fresh and dry vegetation) and (2) random selection. In addition, we used three vegetation indices (Normalized Difference Vegetative Index (NDVI), Soil-adjusted Vegetation Index (SAVI) and Wide Dynamic Range Vegetation Index (WDRVI)) as proxies to CP and NDF estimation. The best models found for predicting CP and NDF contents were based on reflectance measurements (R2 = 0.71, RMSEP = 2.1% for CP; and R2 = 0.78, RMSEP = 5.5% for NDF). These models contained fresh and dry vegetation samples in calibration and validation data sets. Random sample selection in a model generated similar accuracy estimations. Our results also indicate that vegetation indices provide poor accuracy. Eight Sentinel-2 images (December 2015–April 2017) were examined in order to better understand the variability of vegetation quality over spatial and temporal scales. The spatial and temporal patterns of CP and NDF contents exhibit strong seasonal dependence, influenced by climatological (precipitation) and topographical (northern vs. southern hillslopes) conditions. The total CP/NDF content increases/decrease (respectively) from December to March, when the concentrations reach their maximum/minimum values, followed by a decline/incline that begins in April, reaching minimum values in July.


2013 ◽  
Vol 10 (10) ◽  
pp. 6279-6307 ◽  
Author(s):  
E. Boegh ◽  
R. Houborg ◽  
J. Bienkowski ◽  
C. F. Braban ◽  
T. Dalgaard ◽  
...  

Abstract. Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.


Sign in / Sign up

Export Citation Format

Share Document