scholarly journals Targeting Myc and Hdac8 with a Combination of SiRNAs Inhibits Tumor Growth in a Murine Neuroblastoma Xenograft Model

2020 ◽  
Vol 6 (1) ◽  
pp. 301-307
Author(s):  
Prashad N

Neuroblastoma is a common tumor of the peripheral nervous system in children. Highly aggressive MYC-drivenneuroblastoma is defined by increased MYC and/or MYCN expression. HDAC8 overexpression is associated with advanced neuroblastoma. Previously, we have demonstrated that transient knockdown of both Myc and Hdac8 using siRNA significantly suppressed neuroblastoma cells proliferation compared to knockdown of either target in vitro. In this study, we further investigated whether combinational targeting Myc and Hdac8 in neuroblastoma xenograft mice model is consistent with our previous findings. Intratumoral treatment with siRNA-MYC and siRNA-HDAC8 reduced the levels of the target MYC protein by 64% and HDAC8 by 85%; in addition, we found that the average tumor growth was reduced by 80% compared to that of control tumors treated with NC-siRNA. Our results suggest the potential therapeutic effect of the combination of siRNA-MYC and siRNA-HDAC8 for neuroblastoma treatment.

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4648
Author(s):  
Eva Lhuissier ◽  
Juliette Aury-Landas ◽  
Marion Lenté ◽  
Karim Boumediene ◽  
Catherine Baugé

Background: We have previously shown that 3-Deazaneplanocin A (DZNep) induces apoptosis in chondrosarcomas. Herein, we tested whether the combination of this epigenetic drug to a standard anticancer therapy may enhance the response to each drug in these bone tumors. Methods: Two chondrosarcoma cell lines (SW1353 and JJ012) were cultured in the presence of DZNep and/or cisplatin. Cell growth was evaluated by counting viable cells, and apoptosis was determined by Apo2.7 expression by flow cytometry. In vivo, the antitumoral effect of the DZNep/cisplatin combination was assessed through measurements of tumor volume of JJ012 xenografts in nude mice. Results: In vitro, the DZNep/cisplatin combination reduced cell survival and increased apoptosis compared to each drug alone in chondrosarcomas, but not in normal cells (chondrocytes). This enhancement of the antitumoral effect of the DZNep/cisplatin combination required a priming incubation with DZNep before the co-treatment with DZNep/cisplatin. Furthermore, in the chondrosarcoma xenograft mice model, the combination of both drugs more strongly reduced tumor growth and induced more apoptosis in tumoral cells than each of the drugs alone. Conclusion: Our results show that DZNep exposure can presensitize chondrosarcoma cells to a standard anticancer drug, emphasizing the promising clinical utilities of epigenetic-chemotherapeutic drug combinations in the future treatment of chondrosarcomas.


2019 ◽  
Vol 10 (10) ◽  
pp. 1400-1406 ◽  
Author(s):  
Parichat Suebsakwong ◽  
Jie Wang ◽  
Phorntip Khetkam ◽  
Natthida Weerapreeyakul ◽  
Jing Wu ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1268 ◽  
Author(s):  
Kuan-Lin Kuo ◽  
Shing-Hwa Liu ◽  
Wei-Chou Lin ◽  
Po-Ming Chow ◽  
Yu-Wei Chang ◽  
...  

After chemotherapy for the treatment of metastatic bladder urothelial carcinoma (UC), most patients inevitably encounter drug resistance and resultant treatment failure. Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins and play a critical role in maintaining protein homeostasis. This study investigated the antitumor effect of PR-619, a DUBs inhibitor, in combination with cisplatin, for bladder UC treatment. Our results showed that PR-619 effectively induced dose- and time-dependent cytotoxicity, apoptosis, and ER-stress related apoptosis in human UC (T24 and BFTC-905) cells. Additionally, co-treatment of PR-619 with cisplatin potentiated cisplatin-induced cytotoxicity in UC cells and was accompanied by the concurrent suppression of Bcl-2. We also proved that Bcl-2 overexpression is related to the chemo-resistant status in patients with metastatic UC by immunohistochemistry (IHC) staining. In a xenograft mice model, we confirmed that PR-619 enhanced the antitumor effect of cisplatin on cisplatin-naïve and cisplatin-resistant UCs. Our results demonstrated that PR-619 effectively enhanced the cisplatin-induced antitumor effect via concurrent suppression of the Bcl-2 level. These findings provide promising insight for developing a therapeutic strategy for UC treatment.


RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96946-96962 ◽  
Author(s):  
C. Balachandran ◽  
K. Chennakesava Rao ◽  
Y. Arun ◽  
N. Emi ◽  
N. Yamamoto ◽  
...  

In vitro and in vivo anticancer activity of compound 3a was proved as a novel blocker of JAK2/STAT3 signaling pathway and exerts both anti-proliferative and apoptotic activities in HepG-2 cells with xenograft mice model.


2016 ◽  
Vol 39 (5) ◽  
pp. 1795-1803 ◽  
Author(s):  
Chengyu Wang ◽  
Yin Cheng ◽  
Hongyi Liu ◽  
Yaping Xu ◽  
Hu Peng ◽  
...  

Background/Aims: Nasopharyngeal cancer (NPC) is one of the common human malignant diseases all over the world, and chemotherapy remains the main therapy for NPC. However, the survival and life quality of NPC patients are still very poor. Thus, novel and selective anti-tumor agents are pressingly needed. Our previous study identified pectolinarigenin as a novel effective anti-tumor drug candidate for NPC. In this study, we further investigated its anti-tumor activities and explored the potential molecular mechanism. Methods: NPC C666-1 cells were cultured and treated by pectolinarigenin. Cell proliferation assay, colony formation assay, Transwell assay and wound healing assay were conducted and cell apoptosis was detected by flow cytometry. Mitochondrial transmembrane potential and ROS were also observed. NPC subcutaneous xenograft mice model was established to evaluate the anti-tumor effect of pectolinarigenin in vivo. Results: We observed that treatment of pectolinarigenin inhibited cell viability and cell migration of NPC C666-1 cells in concentration- and time-dependent manner. Pectolinarigenin induced cell apoptosis in C666-1 cells detected by flow cytometry analysis, which was associated with the activation of mitochondrial-related apoptosis and the accumulation of reactive oxygen species (ROS). Pectolinarigenin also activated caspase signaling pathway. The in vivo experiment of subcutaneous xenograft mice model also indicated that the administration of pectolinarigenin could decrease the tumor growth of NPC and no severe toxicity was observed. Conclusions: Based on our findings, we conclude that pectolinarigenin could suppress the tumor growth of NPC, which verifies it as a new therapeutic agent for treating this devastating disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Schwinn ◽  
Zeinab Mokhtari ◽  
Sina Thusek ◽  
Theresa Schneider ◽  
Anna-Leena Sirén ◽  
...  

AbstractMedulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Fuli Li ◽  
Tinglei Huang ◽  
Yao Tang ◽  
Qingli Li ◽  
Jianzheng Wang ◽  
...  

AbstractUtidelone (UTD1), a novel microtubule stabilizing agent, is an epothilone B analogue which was produced by genetic engineering. UTD1 has exhibited broad antitumor activity in multiple solid tumors. However, its activity and mechanism in colorectal cancer (CRC) remain to be studied. In this study, UTD1 dramatically inhibited CRC cell proliferation (with 0.38 µg/ml, 0.77 µg/ml IC50 in RKO and HCT116, respectively) in vitro. Immunofluorescence staining showed that UTD1 induced the formation of microtubule bundling and asters in RKO cells. Flow cytometry analysis demonstrated that UTD1 induced cell cycle to arrest in G2/M phase, subsequent apoptosis. Significantly, UTD1 exhibited stronger effect on inducing apoptosis than paclitaxel and 5-FU, especially in HCT15 cells which is ABCB1 high-expression. UTD1 exposure cleaved caspase-3 and poly ADP-ribose polymerase (PARP), decreased mitochondrial membrane potential, released cytochrome c, increased the production of active oxygen and activated c-Jun N-terminal kinase (JNK), suggesting ROS/JNK pathway was involved in this process. Moreover, UTD1 inhibited tumor growth and was more effective and safer compared with paclitaxel and 5-FU in RKO xenograft in nude mice. Taken together, our findings first indicate that UDT1 inhibits tumor growth in CRC xenograft model and may be a promising agent for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document