xenograft mice model
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 2)

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiyu Qin ◽  
Yongliang Zheng ◽  
Cheng Huang ◽  
Yuanyuan Li ◽  
Min Gu ◽  
...  

Abstract Background Gallbladder cancer (GBC) is the seventh most common gastrointestinal cancer worldwide. This study aimed to investigate the function of circSMAD2 in GBC. Methods To investigate the function of circSMAD2 in GBC, the level of circSMAD2 in GBC cells was detected by RT-qPCR. CCK-8 assay was performed to investigate the cell viability. Cell apoptosis was tested by flow cytometry. In addition, transwell assay was used to detect the cell migration and invasion. RIP and RNA pull-down were used to explore the relation among circSMAD2, eIF4A3 and SMAD2. Meanwhile, xenograft mice model was established to investigate the function of circSMAD2 in GBC. Results The data revealed that circSMAD2 was upregulated in GBC, and circSMAD2 knockdown significantly inhibited the viability of GBC cells. In addition, circSMAD2 siRNA notably induced the apoptosis in GBC cells. The migration and invasion of GBC cells were obviously suppressed in the presence of circSMAD2 siRNA. Meanwhile, circSMAD2 suppressed the binding between eukaryotic translation initiation factor 4A3 (eIF4A3) and SMAD2 through binding with eIF4A3. Knockdown of circSMAD2 notably inhibited the expression of SMAD2 in GBC cells, and SMAD2 overexpression partially reversed the anti-tumor effect of circSMAD2 knockdown. Finally, circSMAD2 siRNA significantly inhibited the tumor growth of GBC in vivo. Conclusion Knockdown of circSMAD2 inhibits the tumorigenesis of gallbladder cancer through binding with eIF4A3. Thus, our study provided a new strategy for the treatment of GBC.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4648
Author(s):  
Eva Lhuissier ◽  
Juliette Aury-Landas ◽  
Marion Lenté ◽  
Karim Boumediene ◽  
Catherine Baugé

Background: We have previously shown that 3-Deazaneplanocin A (DZNep) induces apoptosis in chondrosarcomas. Herein, we tested whether the combination of this epigenetic drug to a standard anticancer therapy may enhance the response to each drug in these bone tumors. Methods: Two chondrosarcoma cell lines (SW1353 and JJ012) were cultured in the presence of DZNep and/or cisplatin. Cell growth was evaluated by counting viable cells, and apoptosis was determined by Apo2.7 expression by flow cytometry. In vivo, the antitumoral effect of the DZNep/cisplatin combination was assessed through measurements of tumor volume of JJ012 xenografts in nude mice. Results: In vitro, the DZNep/cisplatin combination reduced cell survival and increased apoptosis compared to each drug alone in chondrosarcomas, but not in normal cells (chondrocytes). This enhancement of the antitumoral effect of the DZNep/cisplatin combination required a priming incubation with DZNep before the co-treatment with DZNep/cisplatin. Furthermore, in the chondrosarcoma xenograft mice model, the combination of both drugs more strongly reduced tumor growth and induced more apoptosis in tumoral cells than each of the drugs alone. Conclusion: Our results show that DZNep exposure can presensitize chondrosarcoma cells to a standard anticancer drug, emphasizing the promising clinical utilities of epigenetic-chemotherapeutic drug combinations in the future treatment of chondrosarcomas.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 990
Author(s):  
Ali H. EI-Far ◽  
Kavitha Godugu ◽  
Taher A. Salaheldin ◽  
Noureldien H. E. Darwish ◽  
Amna A. Saddiq ◽  
...  

Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX’s cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Min Zhang ◽  
Zhi Dai ◽  
Xudong Zhao ◽  
Gan Wang ◽  
Ren Lai

Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 780
Author(s):  
Ji-Young Yoo ◽  
Margaret Yeh ◽  
Yin-Ying Wang ◽  
Christina Oh ◽  
Zhongming Zhao ◽  
...  

Glioblastoma (GBM) is one of the most deadly cancers and poorly responses to chemotherapies, such as temozolomide (TMZ). Dysregulation of intrinsic signaling pathways in cancer cells are often resulted by dysregulated tumor suppressive microRNAs (miRNAs). Previously, we found miR-138 as one of tumor suppressive miRNAs that were significantly down-regulated in GBM. In this study, we demonstrated that ectopic over-expression of miR-138 sensitizes GBM cells to the treatment of TMZ and increased apoptotic cell death. Mechanistically, miR-138 directly repressed the expression of Survivin, an anti-apoptotic protein, to enhance caspase-induced apoptosis upon TMZ treatment. Using an intracranial GBM xenograft mice model, we also showed that combination of miR-138 with TMZ increases survival rates of the mice compared to the control mice treated with TMZ alone. This study provides strong preclinical evidence of the therapeutic benefit from restoration of miR-138 to sensitize the GBM tumor to conventional chemotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huiqing Yu ◽  
Ling Tian ◽  
Liejun Yang ◽  
Shihong Liu ◽  
Sixiong Wang ◽  
...  

BackgroundNon-small cell lung cancer (NSCLC) is a frequently diagnosed aggressive cancer all over the world. Small nucleolar RNAs (snoRNAs) are a group of non-coding mediatory RNAs. A previous report indicated that small nucleolar RNA 47 (SNORA47) is upregulated in NSCLC. However, the role of SNORA47 in NSCLC is unclear.Material and MethodsCell proliferation was measured by immunofluorescence staining. Cell apoptosis and cycle of NSCLC were tested by flow cytometry and the protein expressions were investigated by Western-blot. Meanwhile, cell migration and invasion were detected by transwell assay. Xenograft mice model was established to detect the effect of SNORA47 knockdown on tumor growth of NSLC in vivo.ResultsKnockdown of SNORA47 significantly inhibited the proliferation of NSCLC cells via inducing cell apoptosis. Moreover, migration and invasion of NSCLC cells were notably decreased by SNORA47 shRNA. SNORA47 knockdown significantly induced G1 arrest in NSCLC cells via regulation of p27 Kip1, CDK2, and cyclin D1. Meanwhile, SNORA47 shRNA inhibited EMT process and PI3K/Akt signaling in NSCLC cells. Finally, silencing of SNORA47 significantly inhibited the tumor growth of NSCLC in vivo.ConclusionKnockdown of SNORA47 significantly inhibited the tumorigenesis of NSCLC via inhibition of PI3K/Akt signaling and EMT process. Thereby, our finding might shed a new light on exploring the strategies for the treatment of NSCLC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Sun ◽  
Weicong Chen ◽  
Bin Wen ◽  
Mingjia Zhang ◽  
Haitao Sun ◽  
...  

Hepatocellular carcinoma (HCC) is among the most usual cancers globally. In China, Biejiajian pill (BJJP), Traditional Chinese Medicine clinical prescription, is broadly utilized for the prevention and therapy of HCC. However, the mechanisms by which BJJP exerts its effects on the prevention of tumor invasion and metastasis are still largely unknown. In this study, in vitro multiple hepatic cancer cell lines and an in vivo xenograft mice model were used to validate the preventive effects and molecular mechanisms of BJJP in HCC. We established that BJJP significantly repressed the proliferation, metastasis and infiltration of HCC cells. Furthermore, BJJP remarkably suppressed HCC cell migration, as well as invasion via epithelial-mesenchymal transition (EMT) by modulating Snail expression, which was associated with the repression of Akt/GSK-3β/Snail signaling axis activation. In vivo HCC xenograft results indicated that BJJP delayed HCC development and efficiently inhibited lung metastasis. Taken together, BJJP was shown to be an effective therapeutic agent against HCC through repression of the Akt/GSK-3β/Snail signaling cascade and EMT.


2021 ◽  
Vol 20 ◽  
pp. 153303382199000
Author(s):  
Suoli Cheng ◽  
Jianping Zheng ◽  
Xueqin Liu ◽  
Jiandang Shi ◽  
Fan Gong ◽  
...  

Background: Osteosarcoma is the most leading primary malignancy of the bone in adolescents all over the world. Long non-coding RNA (lncRNA) 91 H has been reported to participated in multiple cancers. Meanwhile, lncRNA 91 H has been proved to be upregulated in osteosarcoma. However, the function of 91 H in osteosarcoma remains unclear. Methods: Gene and protein expressions in osteosarcoma cells were detected by qRT-PCR and western blot, respectively. Cell viability was tested by CCK-8 assay. Ki67 staining was used to measure cell proliferation. Cell apoptosis and cycle were assessed by flow cytometry. In addition, transwell assay was used to detect cell migration and invasion. Furthermore, Methylation-specific PCR (MSP) was performed to test the methylation of CDK4 promoter. Finally, xenograft mice model was established to explore the role of 91 H in osteosarcoma in vivo. Results: Knockdown of 91 H significantly inhibited the growth of osteosarcoma cells via inducing the cell apoptosis. In addition, 91 H siRNA notably suppressed the migration and invasion of osteosarcoma cells. Meanwhile, knockdown of 91 H inhibited the progression of osteosarcoma via inducing methylation of CDK4 promoter. Furthermore, 91 H knockdown obviously induced G1 arrest in osteosarcoma cells via inhibition of PCNA and Cyclin D1. Finally, knockdown of 91 H notably inhibited the tumor growth of osteosarcoma in vivo. Conclusion: knockdown of 91 H suppressed the tumorigenesis of osteosarcoma via inducing methylation of CDK4 promoter in vitro and in vivo. Thus, 91 H may serve as a new target for the treatment of osteosarcoma.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Jooyeon Kim ◽  
◽  
Giljae Lee ◽  
Jingyu Kim ◽  
◽  
...  

In this study, we tried to develop nanoprobe for molecular magnetic resonance (MR) imaging using magnetic nanoclusters (MNC). MNCs for magnetic resonance imaging were synthesized by thermal decomposition. The size of the synthesized MNC was confirmed to be 73 ± 32.4 nm. Cytotoxicity test of the synthesized MNCs showed that the cell state of about 80% or more did not change in all the treatment ranges and cell survival rate was high even though the MNCs were injected. MNC was injected intravenously into the tail vein of nude mice. As a result, it was found that enhancement of the contrast was confirmed in xenograft mice model using MNC. These results will contribute to clinical application and related research through magnetic nanocluster in the future.


Sign in / Sign up

Export Citation Format

Share Document