scholarly journals Synthesis of Composite Materials based on TiB2–TiC–Al2O3 and CrB2-Al2O3 in the Combustion Conditions

2021 ◽  
Vol 23 (2) ◽  
pp. 111
Author(s):  
A.J. Seidualiyeva ◽  
K. Kamunur ◽  
R.G. Abdulkarimova ◽  
U. Onuralp ◽  
A.N. Batkal

Borides and carbides attract the attention of developers of heat-resistant and super hard structural materials due to a unique combination of their resistance to high-temperature oxidation, high hardness, wear resistance, electrical and thermal conductivity and etc. The article presents experimental results on obtaining composites based on TiB2-TiC-Al2O3, CrB2-Al2O3 by a method combining self-propagating high-temperature synthesis (SHS) and mechanical activation (MA). The influence of the composition of the initial components, the conditions of SHS and preliminary MA on the formation of the microstructure and phase composition of the SHS-composite based on titanium carbide and titanium, chromium borides has been studied. The SHS products were examined by X-ray diffraction analysis and a scanning electron microscope. High-temperature phases of borides of chromium, titanium, aluminum oxide and their spinel are found in SHS products.

2012 ◽  
Vol 626 ◽  
pp. 138-142
Author(s):  
Saowanee Singsarothai ◽  
Vishnu Rachpech ◽  
Sutham Niyomwas

The steel substrate was coated by Fe-based composite using self-propagating high-temperature synthesis (SHS) reaction of reactant coating paste. The green paste was prepared by mixing precursor powders of Al, Fe2O3and Al2O3. It was coated on the steel substrate before igniting by oxy-acetylene flame. The effect of coating paste thickness and the additives on the resulted Fe-based composite coating was studied. The composite coating was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with dispersive X-ray (EDS).


2020 ◽  
Vol 1010 ◽  
pp. 65-70
Author(s):  
Zahraa Zulnuraini ◽  
Noraziana Parimin

This paper investigates the performance of Fe-33Ni-18Cr alloy at high temperature oxidation. The samples were isothermally oxidized at three different oxidation temperatures, namely, 600 °C, 800 °C and 1000 °C for 150 hours. This alloy was ground by using several grits of SiC paper as well as weighed by using analytical balance and measured by using Vernier caliper before oxidation test. The characterization was carried out using scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) and x-ray diffraction (XRD). The results show that, the higher oxidation temperatures, the weight gain of the samples were increase. Sample of 1000 °C indicate more weight gain compared to samples oxidized at 600 °C and 800 °C. The kinetic of oxidation of all samples followed the parabolic rate law. The surface morphology of oxide scale at lower temperature is thin and form a continuous layer, while at high temperature, the oxide scale develops thick layer with angular oxide particles.


2010 ◽  
Vol 65 ◽  
pp. 106-111
Author(s):  
Bai Cui ◽  
Rafael Sa ◽  
Daniel Doni Jayaseelan ◽  
Fawad Inam ◽  
Michael J. Reece ◽  
...  

Microstructural evolution of Ti2AlN ceramics during high-temperature oxidation in air has been revealed by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEGSEM), and energy-dispersive spectroscopy (EDS). After oxidation below 1200 °C, layered microstructures formed on Ti2AlN surfaces containing anatase, rutile, and α-Al2O3. Above 1200 °C, more complex layered microstructures formed containing Al2TiO5, rutile, α-Al2O3, and continuous void layers. With increasing temperature, anatase gradually transformed to rutile, and TiO2 reacted with α-Al2O3 to form Al2TiO5. Based on these microstructural observations, an oxidation mechanism for Ti2AlN ceramics is proposed.


2015 ◽  
Vol 817 ◽  
pp. 421-425
Author(s):  
Kun Zhao ◽  
Wan Chang Sun ◽  
Chun Yu Miao ◽  
Hui Cai ◽  
Ju Mei Zhang ◽  
...  

Nickel matrix and Si3N4 micron particles were co-deposited on the aluminum alloy by pulse electro-deposition for high temperature performance. Meanwhile, the oxidation resistance was evaluated through the high temperature oxidation test. The phase structure, micrographs and components of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS) respectively. The results indicated that Si3N4 particles were uniformly distributed across the coating and there were no pores and cracks or other defects at the coating/substrate interface. Ni-Si3N4 composite coatings are characterized by pyramidal micro-crystallite structure. The thickness of Ni-Si3N4 composite coatings were up to 80 μm for 2h. The results also revealed that the Ni-Si3N4 composite coatings presented better oxidation resistance than the pure Ni coating and aluminum alloy at high temperature. After oxidation at 673 K for 8h, the oxidation resistance of Ni-Si3N4 composite coatings presented the improved oxidation resistance behavior compared to pure Ni and the aluminum alloy, respectively.


2011 ◽  
Vol 399-401 ◽  
pp. 1998-2003 ◽  
Author(s):  
Biao Zhou ◽  
Feng Jin ◽  
Qun Luo ◽  
Qian Li ◽  
Kuo Chih Chou

The high temperature oxidation and microstructure evolution of 55%Al-Zn-Si coated sheets were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After oxidation, the coatings consisted of three phases including ZnO, Fe2Al5, and FeAl from topcoat to the substrate. The different diffusion rate of Fe and Al result in forming voids at the interface of intermetallic layer and the substrate. A good agreement has been reached between the experimental data and the calculation from Chou diffusion model, which has a good predicted function. Moreover, the characteristic oxidation time and the apparent activation energy were obtained.


2013 ◽  
Vol 748 ◽  
pp. 46-50 ◽  
Author(s):  
Saowanee Singsarothai ◽  
Sutham Niyomwas

Fe-W based composite have successfully been prepared using natural resource. The ferberite (Fe (Mn, Sn)WO4) tailings mixed with aluminum, carbon and boron oxide powder were used as reactants. The reactants were pressed and followed by oxy-acetylene flame ignition. The products from the self-propagating high-temperature synthesis (SHS) reaction were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with dispersive X-ray (EDS).


2010 ◽  
Vol 658 ◽  
pp. 408-411
Author(s):  
Hui Xie ◽  
Lei Jia ◽  
Si Ming Wang ◽  
Ji Ling Zhu ◽  
Zhen Lin Lu

Cu-Mo-Si alloys with different Cu contents were prepared by self-propagation high-temperature synthesis (SHS). The microstructure and the worn surface morphology were observed using scanning electron microscopy (SEM) together with energy dispersive X-ray spectroscopy (EDS) analysis. Phase composition was determined by X-ray diffraction (XRD). The wear behavior of the Cu-Mo-Si alloys was characterized by pin-on-disc wear tester. The results showed that most of Si atoms dissolved in Cu matrix or resulted in formation of compound with Cu, while only small amount of Si atoms reacted with Mo atoms to form Mo5Si3 particles in the Cu-Ni-Si alloys with 80% Cu content. The wear rate of Cu-Mo-Si alloys descended with a decrease of Cu content, and the predominant wear mechanism could be identified as abrasive wear for Cu content less than 90% and plastic deformation for Cu content higher than 90%.


2018 ◽  
Vol 280 ◽  
pp. 121-126
Author(s):  
Si Thu Myint Maung ◽  
Tawat Chanadee ◽  
Sutham Niyomwas

Intermetallic alloy of tungsten silicide (WSi2-W5Si3) was synthesized by self-propagating high temperature synthesis (SHS) from the reactant of tungsten oxide (WO3) and silicon lump (Si) using magnesium (Mg) as fuel. The standard Gibbs energy minimization method was used to calculate the equilibrium composition of the possible reacting species. The as-SHS products were characterized by X-ray diffraction (XRD) technique. The magnesiothermic reaction process successfully synthesized dense of WSi2-W5Si3intermetallic alloy. According to the experimental results, it can be proposed that the reaction also promotes the phase separation between alloy and oxide slag of the product.


Sign in / Sign up

Export Citation Format

Share Document