scholarly journals Partial Oxidation of Light Alkanes as a Base of New Generation of Gas Chemical Processes

2013 ◽  
Vol 15 (4) ◽  
pp. 265 ◽  
Author(s):  
V.S. Arutyunov ◽  
L.N. Strekova ◽  
A.V. Nikitin

Recent developments in unconventional natural gas production increase the need for principally new small-scale technologies for gas processing and transportation. The promising way for small-scale gas processing is its autothermal partial oxidation to syngas or direct partial oxidation to chemicals. The paper considers some prospective gas chemical processes based on the partial oxidation of light alkanes. Among them are the conversion of natural gas to syngas in volumetric (3D) matrix burners made of a gas permeable material and direct conversion of methane to methanol without its preliminary conversion to syngas (DMTM). As a more simple technology that lets to use fat associated oil gas often flaring in remote sites, it can be suggested the selective oxidative cracking of heavier components of natural gas. This process converts heavy methane homologues from propane to pentane and heavier into ethylene, methane, ethane, hydrogen, and carbon monoxide, thus increasing methane index (octane number) of gas and making it suitable for feeding modern gas piston and gas turbine power engines. One more interesting prospect is the creation of technologies making use of the subsequent processing of valuable oxycracking products, such as olefins, CO, and hydrogen, for example, by their catalytic co-polymerization without preliminary separation from gas phase. The co-polymerization of CO and ethylene, followed by the separation of resulting liquid products, can considerably improve the economic attractiveness of the oxycracing process. Thus, despite the absence of economically proved and industrial-scale tested smallcapacity direct and indirect gas chemical technologies, intensive efforts to develop such alternative technologies let to expect near bright future for them.

Author(s):  
Griffin Beck ◽  
David Ransom ◽  
Kevin Hoopes

Abstract Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks. For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed. This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.


1993 ◽  
Vol 11 (6) ◽  
pp. 569-580
Author(s):  
Rodolfo Navarro Penilla

This general out line for Petroleos Mexicanos describes the natural gas production and processing in Mexico, and the influence that natural gas products and condensate have on petrochemicals production. Since about 80% of natural gas production comes from the off-shore oil-fields in the Gulf of Campeche and from the in-land oil fields of the Chiapas-Tabasco mesozoic region, the Petroleos Mexicanos four largest natural gas processing centres are located in the south-east part of Mexico: Cactus, Nuevo Pemex, Ciudad Pemex and la Venta petrochemical complexes. The first one is located in Chiapas and the others in Tabasco. The impact of natural gas processing over the basic and secondary petrochemical industries is shown through its growing and sustained development since Mexico increased its natural gas availability.


2012 ◽  
Vol 26 ◽  
pp. 62-65 ◽  
Author(s):  
Partho S Roy ◽  
M Ruhul Amin

In this time of energy crisis low production rate against the increasing demand of the gas production regularly hampers both the domestic and industrial operations since natural gas is the major power source of this country. Unless other power source is developed, natural gas is our only hope. Almost all the existing processing plants are now operating beyond their capacities. Nonetheless there has been a dwindling situation in the gas production. Besides political indecision regarding new establishment of gas plant and other power source have made the situation nothing but complicated. In such a case an idea of optimization of the gas processing plant will surely pave a way to a sustainable solution. This project has the intention to carry out the simulation of the Bakhrabad gas processing plant (at Sylhet) using the Aspen-HYSYS process simulator. The steady state simulation of the gas processing plant shall be performed based on both the design and physical property data of the plant. DOI: http://dx.doi.org/10.3329/jce.v26i1.10186 JCE 2011; 26(1): 62-65


2014 ◽  
Vol 53 (30) ◽  
pp. 11891-11900 ◽  
Author(s):  
Krittiya Pornmai ◽  
Narissara Arthiwet ◽  
Nongnuch Rueangjitt ◽  
Hidetoshi Sekiguchi ◽  
Sumaeth Chavadej

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1565 ◽  
Author(s):  
Vladimír Hönig ◽  
Petr Prochazka ◽  
Michal Obergruber ◽  
Luboš Smutka ◽  
Viera Kučerová

There is a global need to increase the production of alternative sources of energy due to many issues related to conventional sources, such as environmental degradation or energy security. In this paper, decentralized liquefied natural gas production is analyzed. Liquefied natural gas, according to the analysis, can be considered a viable alternative even for decentralized applications Design and economic analysis of a small-scale biogas LNG plan together with the necessary technology and economic evaluation are presented in the paper. The results show that a project of the proposed size (EUR 3 million) offers a relatively good profitability level. Specifically, the net present value of the project is mostly positive (around EUR 0.1 million up to EUR 0.8 million). Therefore, based on the research, small LNG plants operating across the continent can be recommended for the processing of local sources of biogas.


2019 ◽  
Vol 25 (1) ◽  
pp. 47-55
Author(s):  
Chongzheng Sun ◽  
Yuxing Li ◽  
Hui Han ◽  
Jianlu Zhu

Small-scale devices of liquefied natural gas (LNG) have been widely applied in the natural gas industries, especially for stranded gas production. As the key equipment of LNG plants, the performance of the spiral wound heat exchanger (SWHE) influences operating costs, reliability and safety of the whole system. In order to obtain the accurate two-phase tube-side heat transfer model for small-scale LNG SWHE and analyze its thermal performance, an experimental device of dual mixed refrigeration (DMR) is constructed. A multi-phase multi- -stream calculation code for SWHE is developed to solve the energy balance equations among tube-side feed gas, tube-side refrigerant and shell-side refrigerant, based on experimental results and thermal property calculation. The results show that the homogeneous flow model can be applied to two-phase tube-side heat transfer calculation of feed gas and Bell and Ghaly?s model and Shah?s model can be both applied to the mixed refrigerant. The relative errors between the results of the experiment and program are all within the range of ?12%.


2017 ◽  
Vol 105 ◽  
pp. 4859-4865 ◽  
Author(s):  
M.A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino

2020 ◽  
Vol 2 (4) ◽  
pp. 185-195
Author(s):  
M. Yu. Egorushkov ◽  
V. Yu. Ivanov ◽  
A. A. Murugov ◽  
A. V. Sheverdin

Introduction: the analysis of the main areas of energy transition (energie wende) from fossil fuels and nuclear power generation to renewable sources of energy has identified the following four key problems: electric power shortage; ageing of power generation facilities; insufficient infrastructure; growing demand for gas fuel. In Russia, distributed small-scale power generation facilities serve those consumers who have no access to centralized power supply or network channels of regular power generation. A combination of versatile approaches to electric power generation should be applied in the course of designing a specific energy generation facility in this context.Methods: the research project represents an analysis of the works written by the leading Russian and foreign researchers specializing on power engineering, namely, energy supply to consumers. The expert assessment method has identified the niches which are best fitted by gas turbine facilities. Computerized and simulation modeling techniques were used to perform the analytical and statistical processing of the project findings.Results and discussion: the trend for the structural improvement of small-scale liquefied natural gas facilities has been identified in the course of the research. The author has substantiated development of systems for power supply to smallcapacity liquefied natural gas production facilities. The proposed gas turbine GTU-2U is designated for generation of electric energy, if in operation as a standalone facility as part of a centralized heating and power plant in the standalone mode of operation, or in case of concurrent operation along with an energy generation system within the framework of distributed small capacity networks. The co-authors have substantiated the unit’s practical application and identified the GTU-2U distribution market both in Russia and abroad: small capacity distributed power generation industry and power supply to small-capacity liquefied natural gas production facilities. The latter is a relatively new market which is in the process of proactive development both in mature and developing economies. This power supply pattern will enable to monetize gas deposits, located far from pipelines and to supply gas to hard-to-access regions.Conclusion: the key trends in the development of the contemporary power generation industry are considered in the article. Gas turbine unit GTU-2U has been designed. This unit is capable of generating power both as a standalone facility, as a component of a centralized heating and power plant in the standalone mode of operation, or in case of concurrent operation along with an energy generation system. Its strengths substantiate its practical application both in the Russian and international power generation markets.


Sign in / Sign up

Export Citation Format

Share Document