scholarly journals Side-chain modified vitamin D analogs require activation of both PI 3-K and erk1,2 signal transduction pathways to induce differentiation of human promyelocytic leukemia cells.

2002 ◽  
Vol 49 (2) ◽  
pp. 393-406 ◽  
Author(s):  
Ewa Marcinkowska ◽  
Andrzej Kutner

Synthetic analogs of vitamin D for potential use in differentiation therapy should selectively regulate genes necessary for differentiation without inducing any perturbations in calcium homeostasis. PRI-1906, an analog of vitamin D2, and PRI-2191, an analog of vitamin D3 bind nuclear vitamin D receptor (nVDR) with substantially lower affinity than 1,25-dihydroxyvitamin D3 (1,25-D3), but have higher differentiation-inducing activity as estimated in HL-60 leukemia cellmodel. To examine how their increased differentiation-inducing activity is regulated we tested the hypothesis that membrane-mediated events, unrelated to nVDR, take part in the differentiation in response to PRI-1906 and PRI-2191. The induction of leukemia cell differentiation in response to the analogs of vitamin D was inhibited by LY294002 (phosphatidylinositol 3-kinase inhibitor), PD98059 (inhibitor of MEK1,2, an upstream regulator of extracellular-signal regulated kinase) and rapamycin (p70S6K inhibitor) pointing out that activation of signal transduction pathways unrelated to nVDR is necessary for differentiation. On the other hand, inhibition of cytosolic phospholipase A2 accelerated the differentiation of HL-60 cells induced by either 1,25-D3 or by the vitamin D analogs suggesting possible existence of a feedback loop between extracellular-signal regulated kinases and phospholipase A2.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2371-2371
Author(s):  
Mayumi Sugita ◽  
Grace R Jeschke ◽  
Martin P. Carroll ◽  
Alexander E. Perl

Abstract Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase and is the most commonly mutated gene in acute myeloid leukemia (AML). Second generation FLT3 inhibitors such as quizartinib (AC220) are clinically active in relapsed FLT3-ITD+ patients. However, not all patients respond and to date primary resistance has not been characterized. A previous study proposed that AML cells from patients with relapsed FLT3 mutant AML and samples with high allelic burden for FLT3 ITD are more sensitive to FLT3 inhibitor cytotoxicity (Pratz KW, et al Blood 2010). We performed studies to test this hypothesis and determine if cells with homodimeric FLT3 ITD are more heavily dependent on FLT3 ITD for growth and survival than cells expressing heterodimeric FLT3 WT:FLT3 ITD. 16 primary AML samples that contain FLT3 ITD mutations were incubated in increasing concentrations of the second generation FLT3 inhibitor crenolanib and assayed for survival in short term liquid culture assays. Only 6 samples demonstrated greater than 30% inhibition of survival in this culture system whereas 10 samples showed little or no cytotoxic response. Consistent with previous results (Pratz, et. al, Blood 2010), responding samples tended to be from relapsed patients and to have higher FLT3 ITD allelic ratios. We then analyzed FLT3 expression and phosphorylation levels as well as inhibition of and crenolanib inhibition of FLT3 phosphorylation, as well as the canonical downstream signal transduction pathways STAT5, ras/MAPK, and PI3K/AKT/mTOR in 13 FLT3-ITD+ primary AML samples. For 11/13 samples, crenolanib strongly inhibited phosphorylation of FLT3 kinase. However, neither FLT3 protein expression nor baseline phosphorylation level correlated with cytotoxic response in liquid culture assays. Crenolanib inhibited phosphorylation of STAT5, ribosomal S6 and ERK to varying degrees and inhibition of none of these pathways consistently correlated with cytotoxicity. Overall, these results are consistent with the hypothesis that FLT3 ITD mutant AML with high allele burden or relapsed samples are more addicted to FLT3 ITD. To further examine this topic, we studied AML cell lines that express only wild type FLT3 (THP1), both FLT3-ITD and WT FLT3 (MOLM14) or FLT3-ITD but not WT-FLT3 (Mv4;11, TF1-ITD). Growth of all three cell lines expressing FLT3-ITD but not THP1 cells was inhibited by crenolanib. Crenolanib inhibited tyrosine phosphorylation and activation of downstream signaling pathways in all three FLT3-ITD+ cell lines. Importantly, crenolanib was active at 10 nM in TF1-ITD cells but higher concentrations were required to inhibit signaling in Mv4;11 cells. This suggests that allele ratio alone does not determine sensitivity to FLT3 inhibitors. Interestingly, FLT3 ligand (FL) impairs inhibition of FLT3 by kinase inhibitor and, again, mutant cell lines are similarly responsive to FL in the presence of kinase inhibitor. In summary, these data demonstrate that AML cells have variable dependence on mutant FLT3 for survival. Samples with high allele ratio and relapsed samples behave in a manner consistent with oncogene addiction and are likely to show cytotoxicity to FLT3 inhibition. However, the basis for oncogene addiction is unclear and does not depend on activation of the canonical signal transduction pathways known to be downstream of FLT3. Interestingly, a recent unbiased screen of phosphorylated proteins in FLT3-ITD+ AML to predict clinical response to AC220 did not identify tyrosine phosphorylation of canonical FLT3 targets, but correlated clinical response with serine phosphorylation on EEPD1-S160, BCL11A-S630, and RANBP3-S333 (Schaab C, et al. Leukemia 2014). Analysis of the effects of FLT3 inhibitors upon these proteins in FLT3 mutant primary samples and cell lines is ongoing. Disclosures Perl: Arog pharmaceuticals: Consultancy; Ambit Biosciences: Consultancy.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1039-1046 ◽  
Author(s):  
Kirit M. Ardeshna ◽  
Arnold R. Pizzey ◽  
Stephen Devereux ◽  
Asim Khwaja

Abstract As a dendritic cell (DC) matures, it becomes more potent as an antigen-presenting cell. This functional change is accompanied by a change in DC immunophenotype. The signal transduction events underlying this process are poorly characterized. In this study, we have investigated the signal transduction pathways involved in the lipopolysaccharide (LPS)-induced maturation of human monocyte–derived DCs (MoDCs) in vitro. We show that exposure of immature MoDCs to LPS activates the p38 stress-activated protein kinase (p38SAPK), extracellular signal–regulated protein kinase (ERK), phosphoinositide 3-OH kinase (PI3 kinase)/Akt, and nuclear factor (NF)-κB pathways. Studies using inhibitors demonstrate that PI3 kinase/Akt but not the other pathways are important in maintaining survival of LPS-stimulated MoDCs. Inhibiting p38SAPK prevented activation of the transcription factors ATF-2 and CREB and significantly reduced the LPS-induced up-regulation of CD80, CD83, and CD86, but did not have any significant effect on the LPS-induced changes in macropinocytosis or HLA-DR, CD40, and CD1a expression. Inhibiting the NF-κB pathway significantly reduced the LPS-induced up-regulation of HLA-DR as well as CD80, CD83, and CD86. Inhibiting the p38SAPK and NF-κB pathways simultaneously had variable effects depending on the cell surface marker studied. It thus appears that different aspects of LPS-induced MoDC maturation are regulated by different and sometimes overlapping pathways.


2001 ◽  
Vol 281 (1) ◽  
pp. E162-E170 ◽  
Author(s):  
Wen Yang ◽  
Sven Johan Hyllner ◽  
Sylvia Christakos

In this study, the interrelationship between signal transduction pathways and 1,25-dihydroxyvitamin D3[1,25(OH)2D3] action was examined in UMR106 osteoblastic cells. Treatment of these cells with 8-bromo-cAMP (1 mM) resulted in an upregulation of the vitamin D receptor (VDR) and an augmentation in the induction by 1,25(OH)2D3 of 25(OH)D3 24-hydroxylase [24(OH)ase] and osteopontin (OPN) mRNAs as well as gene transcription. Transfection with constructs containing the vitamin D response element devoid of other promoter regulatory elements did not alter the cAMP-mediated potentiation, suggesting that cAMP-enhanced transcription is due, at least in part, to upregulation of VDR. Treatment with phorbol ester [12- O-tetradecanoyl-phorbol-13-acetate (TPA) 100 nM], an activator of protein kinase C, significantly enhanced 1,25(OH)2D3-induced OPN mRNA and transcription but had no effect on VDR or on 24(OH)ase mRNA or transcription. Studies using OPN promoter constructs indicate that TPA-enhanced OPN transcription is mediated by an effect on the OPN promoter separate from an effect on VDR. Thus interactions with signal transduction pathways can enhance 1,25(OH)2D3 induction of 24(OH)ase and OPN gene expression, and, through different mechanisms, changes in cellular phosphorylation may play a significant role in determining the effectiveness of 1,25(OH)2D3 on transcriptional control in cells expressing skeletal phenotypic properties.


Life Sciences ◽  
1973 ◽  
Vol 13 (12) ◽  
pp. 1737-1746 ◽  
Author(s):  
Peter F. Brumbaugh ◽  
Mark R. Haussler

2002 ◽  
Vol 22 (20) ◽  
pp. 7279-7290 ◽  
Author(s):  
Yi Wang ◽  
Steven Pennock ◽  
Xinmei Chen ◽  
Zhixiang Wang

ABSTRACT In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal.


Endocrinology ◽  
1985 ◽  
Vol 117 (5) ◽  
pp. 2203-2210 ◽  
Author(s):  
ELIZABETH M. COSTA ◽  
MARGARET A. HIRST ◽  
DAVID FELDMAN

Sign in / Sign up

Export Citation Format

Share Document