scholarly journals A comparison of the in vitro genotoxicity of anticancer drugs idarubicin and mitoxantrone.

2002 ◽  
Vol 49 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Janusz Błasiak ◽  
Ewa Gloc ◽  
Mariusz Warszawski

Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Xueqiu Chen ◽  
Yimin Yang ◽  
...  

Abstract Background Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host’s DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. Methods HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. Results γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. Conclusions Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4353-4353
Author(s):  
Janusz Blasiak ◽  
Jozef Drzewoski ◽  
Tomasz Poplawski ◽  
Agnieszka Czechowska

Abstract Imatinib (STI571) is a 2-phenylaminopyrimidine derivative used mostly in the treatment of chronic myeloid leukaemia. It targets specifically the BCR/ABL oncogenic tyrosine kinase, inhibiting its activity. Using the alkaline comet assay we showed that STI571 at concentrations ranging from 0.05 to 2 μM induced DNA damage in human leukemic K562 cells expressing the BCR/ABL oncogene, whereas it had no effect in normal human lymphocytes. Because the extent of DNA damage observed in the neutral and pH 12.1 versions of the comet assay was much lesser than in the alkaline version, we concluded that the drug induced DNA alkali-labile sites rather than strand breaks. Imatinib did not induce DNA strand breaks in the direct interaction with DNA as examined by the plasmid relaxation assay. K562 cells were unable to repair H2O2-induced DNA damage during a 120-min incubation, if they had been preincubated with STI571, whereas normal lymphocytes did so within 60 min. Pre-treatment of K562 cells with vitamins A, C and E reduced the extent of DNA damage evoked by STI571. Similar results brought experiments with the nitrone spin traps POBN and PBN, suggesting that free radicals may be involved in the formation of DNA lesions induced by STI571 in K562 cells. These cells exposed to imatinib and treated with endonuclease III, formamidopyrimidine-DNA glycosylase and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 339
Author(s):  
Julen Sanz-Serrano ◽  
Ariane Vettorazzi ◽  
Damian Muruzabal ◽  
Amaya Azqueta ◽  
Adela López de Cerain

This article focuses on a complete in vitro genotoxicity assessment of three nutrients widely used as functional ingredients in the European market: betaine, choline, and taurine. The European Food Safety Authority (EFSA) tiered approach for food additives in concordance with the safety assessment of chemicals in food developed by Food and Agriculture Organization/World Health Organization (FAO/WHO) was followed; the miniaturized Ames test in Salmonella typhimurium TA97a, TA98, TA100, TA102, and TA1535 strains (following the principles of Organization for Economic Co-operation and Development (OECD) 471), and the micronucleus test (OECD 487) in TK6 cells were performed. In addition, the in vitro standard and enzyme-modified (human 8-oxoguanine DNA glycosylase 1 (hOGG), endonuclease III (EndoIII), 3-alkyladenine DNA glycosylase (hAAG)) comet assay (S9−/S9+) was conducted in order to assess the potential premutagenic lesions in TK6 cells. None of the compounds produced any signs of genotoxicity in any of the conditions tested. This article increases the limited evidence available and complements the EFSA recommendations for the in vitro genotoxicity testing of nutrients.


1986 ◽  
Vol 163 (3) ◽  
pp. 746-751 ◽  
Author(s):  
D A Carson ◽  
S Seto ◽  
D B Wasson

The metabolic causes for immune impairment in patients with severe chronic inflammatory diseases have not been clearly defined. Recently, the overproduction of poly(ADP-ribose) in resting lymphocytes with unrepaired DNA strand breaks has been suggested to contribute to immune dysfunction in adenosine deaminase-deficient patients. Our experiments have determined to what extent DNA damage and poly(ADP-ribose) synthesis might also explain the impaired mitogen responsiveness of PBL exposed to toxic oxygen species. Treatment of normal resting human lymphocytes with xanthine oxidase and hypoxanthine dose-dependently induced DNA strand breaks and triggered the rapid synthesis of poly(ADP-ribose). Subsequently, NAD+ and ATP pools decreased precipitously. Lymphocytes exposed previously to the enzymatic oxidizing system did not synthesize DNA after stimulation with PHA. However, if the medium was supplemented with 3-aminobenzamide or nicotinamide, two compounds that inhibit poly(ADP-ribose) formation, cellular NAD+ and ATP pools were preserved, and the lymphocytes responded vigorously to a mitogenic challenge. Excessive poly(ADP-ribose) synthesis, provoked by DNA strand breakage, may represent a common pathway that connects the immunodeficiency syndromes associated with (a) exposure of lymphocytes to toxic oxygen species during chronic inflammatory states, (b) adenosine deaminase deficiency, and (c) certain DNA repair disorders.


2020 ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Yi Yang ◽  
Xueqiu Chen ◽  
...  

Abstract Background: Toxoplasma gondii (T. gondii) is an obligate parasite of the warm-blooded animals with a worldwide distribution. Once having entered a host cell, it manipulates host’s DNA damage response that is yet to be investigated. The objectives of the present study were three-fold: 1) to assess DNA damages in T. gondii-infected cells in vitro; 2) to ascertain sources causing DNA damage in T. gondii-infected cells; 3) to investigate activation of DNA damage response during T. gondii infection.Methods: HeLa, Vero and HEK293 cells were infected with T. gondii at multiplicity of infection (MOI) of 10:1. Infected cells at 10 h, 20 h or 30 h post infection were analyzed for a DNA double strand breaks (DSBs) biomarker γH2AX using Western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were examined using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), and the impact of ROS on DNA damage was assessed by inhibition using a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage response in these T. gondii-infected cells was evaluated by detecting the expression of active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) with Western blot. Results: Compared to uninfected cells, γH2AX expression in the infected HeLa cells at 10 h, 20 h, and 30 h was increased over time during T. gondii infection. NAC treatment reduced ROS level in host cells and significantly decreased the expression of γH2AX. Expression of phosphorylated ATM/CHK2 was elevated in T. gondii-infected cells.Conclusion: T. gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also concomitantly activated DNA damage response pathway ATM/CHK2. T. gondii struggles a balance between survival and apoptosis of its host cells for the benefit of its own survival.


2014 ◽  
Vol 64 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Radaković Milena ◽  
Đelić Ninoslav ◽  
Stevanović Jevrosima ◽  
Anđelković Marko ◽  
Kolarević Stoimir ◽  
...  

Abstract Adrenaline is a neurotransmitter and hormone that plays an important role in physiological regulatory mechanisms. The objective of this study was to assess primary DNA damage in isolated human lymphocytes exposed to adrenaline using the in vitro comet assay. Dose-response of human lymphocytes was determined at concentration range of adrenaline from 0.01 μM to 300 μM for various treatment times (1h, 2h, 4h and 24h). The obtained results showed that adrenaline induced DNA damage at concentration range from 5 μM to 300 μM after 1h, 2h and 4h of treatment. The slightest DNA damage was observed after 24 h of adrenaline treatment - only the highest concentrations of adrenaline (150 μM and 300 μM) caused increased level of DNA damage. In order to evaluate the potential contribution of reactive oxygen species (ROS) in adrenaline-induced DNA damage we used antioxidants catalase (100 IU/mL and 500 IU/mL) and quercetin (100 μM and 500 μM). Co-treatment of lymphocytes with adrenaline (300 μM) and antioxidants for 1 h, significantly reduced the quantity of DNA in the comet tails. Therefore, it can be concluded that adrenaline exhibits genotoxic effects mainly through induction of reactive oxygen species and that some of the DNA damage is repaired during the first four hours following the treatment with adrenaline.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


Author(s):  
Damián Muruzabal ◽  
Julen Sanz-Serrano ◽  
Sylvie Sauvaigo ◽  
Bertrand Treillard ◽  
Ann-Karin Olsen ◽  
...  

AbstractMechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.


Author(s):  
Xinrui Zhang ◽  
Mariana Bobeica ◽  
Michael Unger ◽  
Anastasia Bednarz ◽  
Bjoern Gerold ◽  
...  

Abstract Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage.


Sign in / Sign up

Export Citation Format

Share Document