scholarly journals Mutations in COL1A1 and COL1A2 Genes Associated with Osteogenesis Imperfecta (OI) Types I or III.

2018 ◽  
Vol 65 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Aleksandra Augusciak-Duma ◽  
Joanna Witecka ◽  
Aleksander L. Sieroń ◽  
Magdalena Janeczko ◽  
Jacek J Pietrzyk ◽  
...  

Over 85% of osteogenesis imperfecta (OI) cases associates to mutations in procollagen type I genes (COL1A1 or COL1A2), however, no hot spots were linked to particular clinical phenotypes. The 8 patients whom were clinically diagnosed with OI are from Polish population with no ethnic background indicated. Six unpublished mutations were detected in eight patients diagnosed with OI. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were also determined. In COL1A1 gene the mutations were found in exons 2, 22, 50 and in introns 13 and 51. In COL1A2 one mutation was identified in exon 22. Mutations of deletion type in COL1A1 that resulted in OI type I an effect neither on collagen type I secretion nor its intracellular accumulation were detected. Also, a single base substitution in I13 (c.904-9 G>T) was associated with OI type I. The OI type III was associated with single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly®Cys in the central part of triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation to procollagen type I. The results shall help in genetic counseling of OI patients and provide rational support in making by them and their families conscious, life important decisions.

1991 ◽  
Vol 39 (1) ◽  
pp. 103-110 ◽  
Author(s):  
J Becker ◽  
D Schuppan ◽  
J P Rabanus ◽  
R Rauch ◽  
U Niechoy ◽  
...  

We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.


1992 ◽  
Vol 286 (1) ◽  
pp. 73-77 ◽  
Author(s):  
M Mörike ◽  
R E Brenner ◽  
G B Bushart ◽  
W M Teller ◽  
U Vetter

Collagen produced in vitro by bone cells isolated from 19 patients with different forms of osteogenesis imperfecta (OI) was analysed. Clinically, four patients were classified as OI type I, 10 patients as OI type III and five patients as OI type IV. Bone cells of 12 of the 19 OI patients produced structurally abnormal type I collagen. Electrophoretically uniformly slower migrating collagen type I alpha-chains were found in one case of OI type I, in seven cases of OI type III and in one case of OI type IV; two cultures of OI type III produced two different populations of collagen type I alpha-chains, and one culture of OI type IV showed reduction-sensitive dimer formation of alpha 1(I) chains, resulting from the inadequate incorporation of a cysteine residue into the triple helical domain of alpha 1(I). Quantitative analysis of collagen metabolism led to the distinction of two groups of cultured OI osteoblasts. In osteoblasts of OI type I, mainly production of collagen was decreased, whereas secretion, processing and pericellular accumulation of (pro)collagen type I was similar to that in control osteoblasts. In contrast, in osteoblasts of OI types III and IV, production as well as secretion, processing and pericellular accumulation of (pro)collagen type I were significantly decreased. Low levels of type I collagen were found irrespective of the presence or absence of structural abnormalities of collagen type I in all OI types.


2005 ◽  
Vol 288 (6) ◽  
pp. E1222-E1228 ◽  
Author(s):  
Tomoyuki Iwasaki ◽  
Koji Mukasa ◽  
Masato Yoneda ◽  
Satoshi Ito ◽  
Yoshihiko Yamada ◽  
...  

Dehydroepiandrosterone (DHEA) is a type of adrenal steroid. The concentrations of DHEA and its sulfate (DHEA-S) in serum reach a peak between the ages of 25 and 30 yr and thereafter decline steadily. It was reported that DHEA-S concentration in humans is inversely related to death from cardiovascular diseases. In this study, we examined the effects of DHEA on regulation of collagen mRNA and collagen synthesis in cultured cardiac fibroblasts. Treatment with DHEA (10−6 M) resulted in a significant decrease in procollagen type I mRNA expression compared with controls. This was accompanied by a significant decrease in procollagen type I protein accumulation in the medium and also a significant decrease in procollagen type I protein synthesis in the cellular matrix. Furthermore, to confirm in vitro results, we administered DHEA to Sprague-Dawley rats, which were treated with angiotensin II for 8 wk to induce cardiac damage. Procollagen type I mRNA expression was significantly decreased and cardiac fibrosis significantly inhibited in DHEA-treated rat hearts without lowering the systolic blood pressure. These results strongly indicate that DHEA can directly attenuate collagen type I synthesis at the transcriptional level in vivo and in vitro in cardiac fibroblasts.


2013 ◽  
Vol 03 (01) ◽  
pp. 49-60
Author(s):  
Marcin Majka ◽  
Magdalena Janeczko ◽  
Jolanta Goździk ◽  
Danuta Jarocha ◽  
Aleksandra Auguściak-Duma ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Masayuki Shimano ◽  
Rei Shibata ◽  
Yukiomi Tsuji ◽  
Noriyuki Ouchi ◽  
Yasuya Inden ◽  
...  

The occurrence and development of atrial fibrillation (AF) are associated with changes in electrical properties and cardiac structure, known as electrical and structural atrial remodeling. AF characterized by atrial remodeling also occurs with obesity-related conditions. Adiponectin, an adipose tissue-derived hormone, exerts beneficial effects on the heart in various pathological conditions. These observations led us to speculate that adiponectin levels affect the development and prevalence of AF. Here, we investigated a potential association between circulating adiponectin levels and atrial remodeling in patients with AF. We measured plasma adiponectin levels, serum carboxy-terminal telopeptide of collagen type I (CITP) levels, as a collagen type I degradation marker, and serum type III procollagen-N-peptide (PIIINP) levels, as a collagen type III synthesis marker in consecutive 414 patients; 225 paroxysmal AF, 81 persistent AF and 108 paroxysmal supra-ventricular tachycardia without AF history (control) patients, who admitted for scheduled radiofrequency catheter ablation. Plasma adiponectin levels were significantly higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). Serum CITP levels, but not serum PIIINP levels, were also higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). In addition, a positive correlation was observed between adiponectin levels and CITP levels (r=0.39, p<0.005) or the P wave duration (r=−0.31, p<0.05) in patients with persistent AF. High plasma adiponectin levels are associated with the presence of persistent AF, which is accompanied by increased CITP levels. Hyperadiponectinemia might also attenuate atrial conduction disturbance. Thus, measurement of plasma adiponectin could be useful for assessment of AF.


2005 ◽  
Vol 114 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Tomoko Tateya ◽  
Jin Ho Sohn ◽  
Ichiro Tateya ◽  
Diane M. Bless

This study aimed to clarify the characteristics of rat vocal fold scarring by examining the alteration of key components in the extracellular matrix: hyaluronic acid, collagen, and fibronectin. Under monitoring with a 1.9-mm-diameter telescope, unilateral vocal fold stripping was performed, and larynges were harvested at 2, 4, 8, and 12 weeks after operation. The vocal folds were histologically analyzed with Alcian blue stain, trichrome stain, and immunofluorescence of collagen type I, collagen type III, and fibronectin. The scarred vocal folds showed less hyaluronic acid and more collagen types I and III than did the controls at all time points. Type III was stable for 12 weeks, while type I declined until 8 weeks and thereafter remained unchanged. Fibronectin increased for 4 weeks and then decreased; it was close to the control level at 8 and 12 weeks. These results suggest that the tissue remodeling process in scarred vocal folds slows down around 2 months after wounding.


2007 ◽  
Vol 293 (2) ◽  
pp. C661-C669 ◽  
Author(s):  
Catherine Alexakis ◽  
Terence Partridge ◽  
George Bou-Gharios

Because of its mechanical function, skeletal muscle is heavily influenced by the composition of its extracellular matrix (ECM). Fibrosis generated by chronic damage, such as occurs in muscular dystrophies, is thus particularly disastrous in this tissue. Here, we examined the interrelationship between the muscle satellite cell and the production of collagen type I, a major component of fibrotic ECM, by using both C2C12, a satellite cell-derived cell line, and primary muscle satellite cells. In C2C12 cells, we found that expression of collagen type I mRNA decreases substantially during skeletal muscle differentiation. On a single-cell level, collagen type I and myogenin became mutually exclusive after 3 days in differentiation medium, whereas addition of collagen markedly suppressed differentiation of C2C12 cells. Primary cultures of satellite cells associated with isolated single fibers of the young (4 wk old) mdx dystrophic mouse and of C57BL/10ScSn wild-type controls expressed collagen type I and type III mRNA and protein. This pattern persisted in wild-type mice at all ages. But, curiously, in older (18-mo-old) mdx mice, although the myogenic cells continued to express type III collagen, type I expression became restricted to nonmyogenic cells. These cells typically constituted part of a cellular sheet surrounding the old mdx fibers. This combination of features strongly suggests that the progression to fibrosis in dystrophic muscle involves changes in the mechanisms controlling matrix production, which generates positive feedback that results in a reprogramming of myoblasts to a profibrotic function.


Sign in / Sign up

Export Citation Format

Share Document