scholarly journals NUMERICAL CALCULATION OF THE STIFFNESS OF THE ELASTIC BLOCK OF THE HYDRAULIC SUPPORT SHELL BY THE FINITE ELEMENT METHOD

Author(s):  
B.A. Gordeev ◽  
S.N. Ohulkov ◽  
A.N. Osmekhin ◽  
A.S. Plekhov

The article presents the calculation of the stiffness of the elastic shell of hydraulic supports by the finite element method. This calculation is necessary to know the safety margin of the rubber shell, since with an increase in the resulting vibration, the service life of the MR-hydraulic support decreases, leading to its destruction [1, 2]. The purpose of this study is to calculate and evaluate the maximum shear deformations of the rubber shell of the hydraulic support necessary for the subsequent determination of the stiffness and damping of the hydraulic support at resonant frequencies. The finite element method is used to estimate the maximum shear deformations of the rubber shell of the hydraulic support caused by variable loads.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
P Hernandez ◽  
R Boudet

The objective of this paper is to present a model of the behaviour of dynamical seals and the corresponding numerical results. These seals are used in the mechanism to realize partial sealing when the relative rotating speeds are too high for usual solutions. The studied seals mainly include two discs: one is attached to the shaft and the other to the body, the last one being pushed and the first being attached by springs. During operation, a gaseous film is created between the discs, preventing any contact. The control of the film thickness allows the leakage flow to be controlled. For the behaviour of such mechanisms, an analytical formulation of the problem is firstly presented. Then a geometrical and kinematical model having one degree of freedom is proposed to model the mechanism having two discs in relative rotation, one of which is spirally grooved. A dynamical model associated with the motion of the disc attached to the body has been developed and the mechanics of thin viscous films is used to study the behaviour of the gaseous film at the interface. Utilization of the finite element method in the mechanics of thin viscous films is introduced and a description of the elements used is presented. The influence of the groove's angle and the groove's depth is shown through numerical results concerning leakage mass flow through the mechanism and the loading capacity of the fluid film, as well as the coefficients of stiffness and damping associated with the dynamical model.


Author(s):  
V.V. LEONTYEV ◽  
E.V. KONDRATOVA ◽  
V.P. KOLOMIYCHENKO

Traditional methods for calculating welded joints are based on approximate methods for determining the forces that occur in the joint. This leads to inaccuracies in the definition of stress. In addition, this approach does not allow obtaining a complete picture of the stress-strain state of the joint. All this leads to the need to increase the coefficient of safety margin and, as a result, to increase the cost of construction. The proposed method of calculating the connection using the finite element method allows us to determine the stresses in all the elements of the connection very accurately. This makes it possible to obtain a reliable picture of the stress-strain state of all elements of the connection. As a result, it is possible to reduce the complexity of creating a compound and its mass. The finite element method should be used for calculating critical connections with complex operating conditions. An example of calculating such a connection is considered. A comparative analysis of the results of calculating the t-joint using the arm Joint module Of the WinMachine arm system and the Abaqus finite element package is performed.


2013 ◽  
Vol 690-693 ◽  
pp. 1899-1902
Author(s):  
Zhi Yuang Xiao ◽  
Mu Qing Yang ◽  
Dong Li Ma ◽  
Zheng Neng Li

Variable airship is an important research direction because it can overcome the difficulties in climbing phase caused by huge volume, and can also solve the problem of insufficient strength. The requirements of variation bring significant challenges for the airship structural design. In this paper, a radial variation mechanism was proposed based on an existing airship. The mechanism can achieve a continuous variation of the cross-sectional area from 100 to 7.2 percent. The airship structure was analyzed using the finite element method to make sure the airship has a high safety margin in various conditions.


1998 ◽  
Vol 120 (3) ◽  
pp. 636-639
Author(s):  
Ram Turaga ◽  
A. S. Sekhar ◽  
B. C. Majumdar

This study deals with the stability characteristics of journal bearings using the finite element method. Two different elements, a 3-node linear triangle and a 6-node quadratic triangle, have been used. The results show a significant difference in (1) stiffness and damping coefficients and (2) stability characteristics at high eccentricity ratios due to the use of the two different elements.


1991 ◽  
Vol 113 (4) ◽  
pp. 819-827 ◽  
Author(s):  
Y. Mitsuya ◽  
H. Ota

Averaged static and dynamic lubrication equations are derived in the general form containing anisotropic film thicknesses dependent on roughness orientation. Solving these equations lead to a presentation of the dynamic characteristics of lubricating films existing between computer flying heads and textured media. Squeeze effects owing to moving roughness accompanying high-frequency spacing variation are found to be given as a function of arithmetically averaged film thickness minus harmonically averaged film thickness. The calculation procedure using the finite element method is then presented for the averaged static and dynamic lubrication equations. Stiffness and damping coefficient are demonstrated indicating the effects of roughness orientation and roughness movement. Under the fixed static film conditions, the roughness decreases the stiffness. In contrast to this, the roughness only slightly affects the damping coefficient. Under fixed load and loading point conditions, these relationships are inversed. It is interesting to note that damping coefficients are decreased by longitudinal roughness and are increased by moving transverse roughness. The reason for this tendency is considered to be that the moving transverse roughness serves to generate the squeeze damping force.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document