Improvement of Efficiency of Waste Water Treatment from Metals Using Flotation Combines

2020 ◽  
Vol 24 (10) ◽  
pp. 4-7
Author(s):  
B.S. Ksenofontov ◽  
A.S. Kozodayev ◽  
R.A. Taranov ◽  
M.S. Vinogradov

The work deals with the use of flotation combines for the treatment of waste water from heavy metals. The analysis of various methods of treatment of waste water from heavy metals was carried out, which revealed the most promising technical solutions with their possible implementation for modernization of existing treatment facilities of the enterprise. Experimental studies of several versions of technological schemes were carried out on the basis of which a technological scheme of waste water treatment was selected, including all positions of equipment existing at local treatment facilities, and supplemented with a reagent treatment unit, treatment in a flotation complex using reagents, application of filters and pH correction.

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Wahyu Widayat ◽  
Nusa Idaman Said

It is obvious that hospital waste water is one of the most potential pollutant to the evironment. Thus the waste must be treated properly before it is disposed of to the public sewage facilities. However, limited fund usually become an obstacle when hospitals will construct waste treatment facilities, especially for midle and small typed hospitals.Considering the problem, development of proper waste treatment facilities which is cheap in terms of technology and price and easy operated is very important.This paper describes scheme of biological waste water treatment unit for hospitals which is suitable for Anaerob-aerob Biofilter waste water treatment process. By applying this system Anaerob-aerob Biofilter, concentration of COD, BOD and suspended solid material can be reduced significantly as well as detergen and ammonia. Keywords : rancang bangun, waste water, biofilter, Anaerob-aerob


Author(s):  
Maria Y. Savostyanova ◽  
◽  
Lidia А. Norina ◽  
Arina V. Nikolaeva ◽  
◽  
...  

Retaining of water resources quality is one of the global ecological problems of the modern time. The most promising direction in solving the problem of water resources protection is the reduction of negative environmental influence of waste water from production facilities by upgrading the existing water treatment technologies. To treat utility water, technical and rain water from site facilities of Transneft system entities, the specialists developed and approved standard technological diagrams, which are used in producing treatment facilities. The standard technological diagrams provide for all necessary stages of waste water treatment ensures the reduction of pollution level to normal values. However, during operation of treatment facilities it was established, that to ensure the required quality of waste water treatment with initially high levels of pollution, the new technological solutions are necessary. The author presents the results of scientific-research work, in the context of which the best affordable technologies were identified in the area of the treatment of waste water with increased content of pollutants and non-uniform ingress pattern. On the basis of the research results the technical solutions were developed for optimization of operation of existing waste water treatment facilities by means of using combined treatment of technical and rain waters and utility waste waters and applying bioreactor with movable bed – biochips. The use of bioreactor with movable bed allows the increase in the area of active surface, which facilitates increase and retention of biomass. Biochips are completely immersed into waste waters, and biofilm is formed on the entire volume of immersion area, facilitating retention of biomass and preventing formation of sediments. Due to mixing the floating device with biofilm constantly moves along the whole area of bioreactor, and, in doing so, speeds up biochemical processes and uniformity of treatment. The advantages of a bioreactor with movable bed – its active sludge durability against increased and changing pollutant concentrations, change of waste water temperature and simplicity of application – ensured the possibility of its use for blending utility waters, technical and rain waters.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2609-2612
Author(s):  
D.-Th. Kollatsch

The most important task of urban drainage and waste water treatment in the future is the environmental care of rivers and receiving waters. For this it is necessary to have a look at all discharges of sewer systems and treatment facilities. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities can be shown. With these models the efficiency of upgrading measures can be proved in all parts of urban water systems.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2012 ◽  
Vol 441 ◽  
pp. 1-4
Author(s):  
Peter J. Hauser

Conventional methods of dyeing cotton with direct and fiber reactive dyes involve large amounts of water and salt and generate significant amounts of highly colored effluent that is difficult to treat in waste water treatment facilities. Cationization of cotton with 3-chloro-2-hydroxypropyltrimethylammonium chloride allows dyeing with direct and fiber reactive dyes with less water and energy usage as well as the eliminating the need for salt. This paper summarizes work to date on the benefits of using cationized cotton.


Sign in / Sign up

Export Citation Format

Share Document