Effects of Elevated Carbon Dioxide Levels and Temperature on the Life History of the Madeira Mealybug (Hemiptera: Pseudococcidae)

2004 ◽  
Vol 39 (3) ◽  
pp. 387-397 ◽  
Author(s):  
Juang-Horng Chong ◽  
Marc W. van lersel ◽  
Ronald D. Oetting

Atmospheric carbon dioxide concentrations and temperatures are increasing and, thus, the interactions between insect herbivores and their host plants in environments of elevated CO2 concentration and temperature must be examined. We investigated the combined effects of elevated atmospheric CO2 concentration (400 and 700 μmol mol−1) and temperature (20, 25 and 30°C) on the development, survival and reproduction of two generations of the Madeira mealybug, Phenacoccus madeirensis Green, and the chemical composition of chrysanthemum, Dendranthema × grandiflora Kitam., leaves. The development of the mealybugs was temperature-driven and was not influenced by the CO2 level or the number of generations. At higher temperatures, the duration to egg eclosion and the developmental time of adult females and males were significantly shortened. More eggs survived to adulthood at higher temperatures. Temperature had no influence on the egg eclosion percentage. The reproductive period of females was shortest at 30°C, while fecundity was highest at 20°C. There was a significantly higher proportion of females at the end of the experiment at lower than at higher temperatures. Elevated CO2 level and temperature did not change the chemical composition (nitrogen and carbon concentrations, and carbon-nitrogen ratio) of the host plants. Relative water content of the leaf tissues was higher at 30°C than other temperature treatments. Our results show that the effects of temperature on the biology of the Madeira mealybug were stronger than that of the elevated CO2 concentration.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Zulfira Rakhmankulova ◽  
Elena Shuyskaya ◽  
Kristina Toderich ◽  
Pavel Voronin

A significant increase in atmospheric CO2 concentration and associated climate aridization and soil salinity are factors affecting the growth, development, productivity, and stress responses of plants. In this study, the effect of ambient (400 ppm) and elevated (800 ppm) CO2 concentrations were evaluated on the C4 xero-halophyte Kochia prostrata treated with moderate salinity (200 mM NaCl) and polyethylene glycol (PEG)-induced osmotic stress. Our results indicated that plants grown at elevated CO2 concentration had different responses to osmotic stress and salinity. The synergistic effect of elevated CO2 and osmotic stress increased proline accumulation, but elevated CO2 did not mitigate the negative effects of osmotic stress on dark respiration intensity and photosystem II (PSII) efficiency. This indicates a stressful state, which is accompanied by a decrease in the efficiency of light reactions of photosynthesis and significant dissipative respiratory losses, thereby resulting in growth inhibition. Plants grown at elevated CO2 concentration and salinity showed high Na+ and proline contents, high water-use efficiency and time required to reach the maximum P700 oxidation level (PSI), and low dark respiration. Maintaining stable water balance, the efficient functioning of cyclic transport of PSI, and the reduction of dissipation costs contributed to an increase in dry shoot biomass (2-fold, compared with salinity at 400 ppm CO2). The obtained experimental data and PCA showed that elevated CO2 concentration improved the physiological parameters of K. prostrata under salinity.


2021 ◽  
Vol 42 (4(SI)) ◽  
pp. 1114-1125
Author(s):  
S.K. Rajkishore ◽  
◽  
P. Doraisamy ◽  
M. Maheswari ◽  
K.S. Subramanian ◽  
...  

Aim: To study the influence of elevated atmospheric CO2 concentrations on the carbon and nitrogen assimilation patterns in rice plants. Methodology: Rice (Oryza sativa) plants were placed in Open Top Chambers (OTCs) and exposed to elevated levels of CO2. The treatments consisted of three levels of CO2 (398, 550 and 750 µmol mol-1) and three levels of nitrogen (0, 150 and 200 kg ha-1) and replicated five times in completely randomized design. Results: Leaf nitrogen was significantly reduced by 10.6 % and 6.5 % during later stages in rice plants exposed to CO2 @ 750 µmol mol-1 and 550 µmol mol-1, respectively over the ambient CO2. Rice plants under elevated CO2 did not exhibit any variations in Nitrate Reductase activity in leaves in comparison to ambient CO2 at tillering stage. Interestingly, NRase activity in leaves decreased at flowering stage whereas NRase activity in roots increased at same stage. The highest mean nitrogen values (0.58, 0.89 and 1.35 %) were observed in Camb (ambient CO2 concentration) and the lowest values (0.51, 0.80 and 1.27 %) in C750 in roots, straw and grains, respectively. Elevated CO2 @ 750 µmol mol-1 significantly increased the above ground biomass (straw and grain) by 15.6 and 40.1 %, respectively, over the ambient CO2 of 398 µmol mol-1. Interpretation: Elevated CO2 enhanced the grain productivity but affected the quality of rice grains. Thus, excessive nitrogen fertilization above the current recommendation is necessary for future high CO2 environments.


Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
Mohammad Sohidul Islam ◽  
Muhammad Aamir Iqbal ◽  
Ali Raza ◽  
...  

The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.


Author(s):  
Sumit Kumar Dey ◽  
B. Chakrabarti ◽  
R Prasanna ◽  
S. D. Singh ◽  
T J Purakayastha ◽  
...  

Increase in the concentration of atmospheric carbon dioxide (CO2) has significant impact on crop growth and productivity. A study was undertaken during the kharif season to study the impacts of elevated CO2 and cyanobacterial inoculation on growth and yield of mungbean crop under different doses of P using Free Air Carbon dioxide Enrichment (FACE) facility. The crop was grown under two CO2 levels i.e., ambient (400 µmol mol-1) and elevated (550 ± 20 µmol mol-1), with five levels of P (0, 8, 12, 16 and 20 mg P kg-1 soil) and 2 levels of calothrix sp. (with and without cyanobacteria) inoculation. Elevated CO2 level increased seed yield by 35.0% and biomass yield by 31.3%. Leaf area, photosynthesis rate and leaf chlorophyll content significantly increased at high CO2 level. Yield attributes such as number of pods plant-1, number of seeds pod-1 and test weight also increased at high CO2 level. Application of P and cyanobacterial inoculation further increased growth and yield of the crop. The study showed that application of P as well as cyanobacteria could help in improving productivity of legumes under elevated CO2 condition.


2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


Sign in / Sign up

Export Citation Format

Share Document