scholarly journals Effects of learning to play stringed instruments in adulthood on frequency discrimination by pitch pattern sequence test

2018 ◽  
pp. 157-163
Author(s):  
Leyla Jalilvand Karimi ◽  
Mahboubeh Rahimi ◽  
Alireza Akbarzadeh Baghban

Background and Aim: Frequency discrimination is an important skill in central auditory processing which plays a critical role in proper reading, writing, and speech perception. Music training is among the ways that improve this skill. Most of the reviewed literature is based on the impact of learning music on the early stages of childhood. Therefore, if the tests used in the assessment of central auditory system are proved to be effective in music training in adulthood, they could be recommended as an appropriate option for adult central auditory processing disorder rehabilitation. This study aimed to investigate the effects of learning to play stringed instruments in adulthood on frequency discrimination by pitch pattern sequence test.Methods: This cross-sectional and non-interventional study was performed on 46 normal hearing subjects aged 20-45 years, 28 non-musicians and 18 musicians who were trained to play music as an adult. They were compared by PPST. The results were analyzed by 2-way analysis of variance.Results: There was a significant difference between the average scores of the two groups, the non-musicians and the musicians, for both ears (p<0.001). On the other hand, there was no significant difference between the two test results in both groups gender wise (p>0.05).Conclusion: More correct answers of musicians indicated their better frequency discrimination compared to non-musicians, which could be a reason for improvement in the performance of the central auditory system caused by music training even in the verge of adulthood.

2014 ◽  
Vol 72 (9) ◽  
pp. 680-686 ◽  
Author(s):  
Karla M. I. Freiria Elias ◽  
Carolina Camargo Oliveira ◽  
Marina Junqueira Airoldi ◽  
Katia Maria D. Franco ◽  
Sônia das Dores Rodrigues ◽  
...  

Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male) between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure); dichotic digit test and staggered spondaic word test (selective attention); pitch pattern and duration pattern sequence tests (temporal processing) and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.


Author(s):  
Behieh Kohansal ◽  
Mehdi Asghari ◽  
Sirvan Najafi ◽  
Fahimeh Hamedi

Background and Aim: Tinnitus is one of the most difficult challenges in audiology and oto­logy. Previous studies have been shown that tinn­itus may interfere with the function of central auditory system (CAS). Involvement of CAS abilities including speech perception and audi­tory processing has led to serious problems in people with tinnitus. Due to the lack of enough information about the impact of tinnitus on CAS and its function, and given that there is no standardized protocol for assessment and mana­gement of tinnitus, this study aimed to review the studies on the effect of tinnitus on the CAS function. Recent Findings: Sixteen eligible articles were reviewed. Temporal and spectral resolution, fre­quency differentiation and speech perception deficits were reported in patients with tinnitus, especially in background noise. This was repor­ted even in tinnitus patients with normal hearing. Conclusion: Assessment of central auditory pro­cessing and speech perception in noise seems to be useful for proper management of tinnitus in clinical practice. Keywords: Tinnitus; auditory system; central auditory processing; speech in noise performance  


2017 ◽  
Vol 28 (07) ◽  
pp. 655-671 ◽  
Author(s):  
Frank E. Musiek ◽  
Jennifer Shinn ◽  
Gail D. Chermak ◽  
Doris-Eva Bamiou

AbstractThe pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement.To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system.A systematic review and synthesis of the literature.The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram.The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system.The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient.


2018 ◽  
Vol 22 (04) ◽  
pp. 408-414 ◽  
Author(s):  
Signe Grasel ◽  
Mario Greters ◽  
Maria Goffi-Gomez ◽  
Roseli Bittar ◽  
Raimar Weber ◽  
...  

Introduction The P3 cognitive evoked potential is recorded when a subject correctly identifies, evaluates and processes two different auditory stimuli. Objective to evaluate the latency and amplitude of the P3 evoked potential in 26 cochlear implant users with post-lingual deafness with good or poor speech recognition scores as compared with normal hearing subjects matched for age and educational level. Methods In this prospective cohort study, auditory cortical responses were recorded from 26 post-lingual deaf adult cochlear implant users (19 with good and 7 with poor speech recognition scores) and 26 control subjects. Results There was a significant difference in the P3 latency between cochlear implant users with poor speech recognition scores (G-) and their control group (CG) (p = 0.04), and between G- and cochlear implant users with good speech discrimination (G+) (p = 0.01). We found no significant difference in the P3 latency between the CG and G+. In this study, all G- patients had deafness due to meningitis, which suggests that higher auditory function was impaired too. Conclusion Post-lingual deaf adult cochlear implant users in the G- group had prolonged P3 latencies as compared with the CG and the cochlear implant users in the G+ group. The amplitudes were similar between patients and controls. All G- subjects were deaf due to meningitis. These findings suggest that meningitis may have deleterious effects not only on the peripheral auditory system but on the central auditory processing as well.


1990 ◽  
Vol 1 (1) ◽  
pp. 31-37
Author(s):  
John Risey ◽  
Wayne Briner

This paper reports a hitherto undescribed relationship between vertigo of central origin and dyscalculia. Subjects with vertigo skipped and displaced decades when counting backwards by two. The error is not recognized when presented visually. The subjects also display decrements in ability to do mental arithmetic and in central auditory processing. The results are discussed in light of the relationship between the central vestibular/auditory system and structures involved in higher cognitive function. The relationship between balance disorders and children with learning disabilities is also examined.


Author(s):  
Sharon Cameron ◽  
Harvey Dillon

Background: Previous studies in a large population of typically developing (TD) children and a smallclinical group showed high correlations between the dichotic and diotic conditions of the Dichotic Digitsdifference Test (DDdT), as well as between DDdT performance and measures of memory and attention.Purpose: The purpose of the study was to investigate the performance on the DDdT in a large clinical sample.Research Design: Correlational analysis between the DDdT diotic condition and the dichotic free recall (FR)right-ear, left-ear, and total (ear-averaged) conditions, as well as between DDdT and memory performance.Study Sample: One hundred one children (6 years, 3 months to 15 years, 0 months, mean 9 years, 6 months)were referred for assessment to the Australian Hearing Central Auditory Processing Disorder (CAPD) service.Results were compared with data from 112 TD children collected from previously published studies.Data Collection and Analysis: Z-scores were used to account for the effect of age on performance.Mean differences between clinical and TD children were investigated using analysis of variance(ANOVA). Pearson product-moment correlations determined the strength of relationships between DDdTconditions and the number memory forward (NMF) and reversed (NMR) subtests of the Test of AuditoryProcessing Skills—Third Edition.Results: Performance by the clinical group on the DDdT dichotic FR (RE, LE, and total) conditions wassignificantly correlated with the diotic condition (r = 0.7; 0.7, 0.8; p < 0.001). Significant correlations werefound between the DDdT diotic and dichotic FR conditions and the NMF (r = 0.5–0.6, p < 0.001) andNMR (r = 0.2–0.5, p < 0.025–0.001). ANOVA revealed no significant difference between the TD andclinical groups (p = 1.0000) in respect to the advantage they got from dichotic listening (calculated asdichotic FR total minus diotic score). Multiple regression revealed that diotic performance and short-termmemory accounted for 68% of the variation in dichotic performance. Random measurement erroraccounted for a further 16%.Conclusions: Factors other than dichotic performance strongly impact a child’s ability to perform a dichoticdigit listening task. This result has widespread implications in respect to the interpretation of CAPDtest results.


2020 ◽  
Vol 24 (04) ◽  
pp. e399-e406
Author(s):  
Joyce Miranda Santiago ◽  
Cyntia Barbosa Laureano Luiz ◽  
Michele Garcia ◽  
Daniela Gil

Abstract Introduction The auditory structures of the brainstem are involved in binaural interaction, which contributes to sound location and auditory figure-background perception. Objective To investigate the performance of young adults in the masking level difference (MLD) test, brainstem auditory-evoked potentials (BAEPs) with click stimulus, and frequency-following response (FFR), as well as to verify the correlation between the findings, considering the topographic origin of the components of these procedures. Methods A total of 20 female subjects between 18 and 30 years of age, with normal hearing and no complaints concerning central auditory processing underwent a basic audiological evaluation, as well as the MLD test, BAEP and FFR. Results The mean result on the MLD test was of 10.70 dB. There was a statistically significant difference in the absolute latencies of waves I, III and V in the BAEPs of the ears. A change in the FFR characterized by the absence of the C, E and F waves was noticed. There was a statistically significant difference in the positive correlation of wave V in the BAEPs with the MLD. There was a statistically significant difference in the positive correlation of the mean MLD and the V, A and F components of the FFR. Conclusion The mean MLD was adequate. In the BAEPs, we observed that the click stimulus transmission occurred faster in the right ear. The FFR showed absence of some components. The mean MLD correlated positively with the BAEPs and FFR.


2019 ◽  
Vol 30 (06) ◽  
pp. 493-501
Author(s):  
Skylar Trott ◽  
Trey Cline ◽  
Jeffrey Weihing ◽  
Deidra Beshear ◽  
Matthew Bush ◽  
...  

AbstractEstrogen has been identified as playing a key role in many organ systems. Recently, estrogen has been found to be produced in the human brain and is believed contribute to central auditory processing. After menopause, a low estrogen state, many women report hearing loss but demonstrate no deficits in peripheral hearing sensitivity, which support the notion that estrogen plays an effect on central auditory processing. Although animal research on estrogen and hearing loss is extensive, there is little in the literature on the human model.The aim of this study was to evaluate relationships between hormonal changes and hearing as it relates to higher auditory function in pre- and postmenopausal (Post-M) females.A prospective, group comparison study.Twenty eight women between the ages of 18 and 70 at the University of Kentucky were recruited.Participants were separated into premenopausal and peri-/Post-M groups. Participants had normal peripheral hearing sensitivity and underwent a behavioral auditory processing battery and electrophysiological evaluation. An analysis of variance was performed to address the aims of the study.Results from the study demonstrated statistically significant difference between groups, where Post-M females had difficulties in spatial hearing abilities as reflected on the Listening in Spatialized Noise Test–Sentences test. In addition, measures on the auditory brainstem response and the middle latency response reflected statistically significant differences between groups with Post-M females having longer latencies.Results from the present study demonstrated significant differences between groups, particularly listening in noise. Females who present with auditory complaints in spite of normal hearing thresholds should have a more extensive audiological evaluation to further evaluate possible central deficits.


2021 ◽  
Author(s):  
Luis M. Rivera-Perez ◽  
Julia T. Kwapiszewski ◽  
Michael T. Roberts

AbstractThe inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input from the pontomesencephalic tegmentum. Activation of nicotinic acetylcholine receptors (nAChRs) in the IC can alter acoustic processing and enhance auditory task performance. However, how nAChRs affect the excitability of specific classes of IC neurons remains unknown. Recently, we identified vasoactive intestinal peptide (VIP) neurons as a distinct class of glutamatergic principal neurons in the IC. Here, in experiments using male and female mice, we show that cholinergic terminals are routinely located adjacent to the somas and dendrites of VIP neurons. Using whole-cell electrophysiology in brain slices, we found that acetylcholine drives surprisingly strong and long-lasting excitation and inward currents in VIP neurons. This excitation was unaffected by the muscarinic receptor antagonist atropine. Application of nAChR antagonists revealed that acetylcholine excites VIP neurons mainly via activation of α3β4* nAChRs, a nAChR subtype that is rare in the brain. Furthermore, we show that cholinergic excitation is intrinsic to VIP neurons and does not require activation of presynaptic inputs. Lastly, we found that low frequency trains of acetylcholine puffs elicited temporal summation in VIP neurons, suggesting that in vivo-like patterns of cholinergic input can reshape activity for prolonged periods. These results reveal the first cellular mechanisms of nAChR regulation in the IC, identify a functional role for α3β4* nAChRs in the auditory system, and suggest that cholinergic input can potently influence auditory processing by increasing excitability in VIP neurons and their postsynaptic targets.Key points summaryThe inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input and expresses a variety of nicotinic acetylcholine receptor (nAChR) subunits.In vivo activation of nAChRs alters the input-output functions of IC neurons and influences performance in auditory tasks. However, how nAChR activation affects the excitability of specific IC neuron classes remains unknown.Here we show in mice that cholinergic terminals are located adjacent to the somas and dendrites of VIP neurons, a class of IC principal neurons.We find that acetylcholine elicits surprisingly strong, long-lasting excitation of VIP neurons and this is mediated mainly through activation of α3β4* nAChRs, a subtype that is rare in the brain.Our data identify a role for α3β4* nAChRs in the central auditory pathway and reveal a mechanism by which cholinergic input can influence auditory processing in the IC and the postsynaptic targets of VIP neurons.


Sign in / Sign up

Export Citation Format

Share Document