scholarly journals Shear Bond Strength of Brackets Bonded with Self-Etching Primers Compared to Conventional Acid-Etch Technique: A Randomized Clinical Trial

Author(s):  
Nasrin Farhadian ◽  
Amirfarhang Miresmaeili ◽  
Vahid Shahidi Zandi

Objectives: The purpose of this randomized clinical trial (RCT) was to compare the shear bond strength (SBS) of orthodontic brackets bonded to enamel with conventional acid-etch (AE) technique and self-etching primers (SEP). Materials and Methods: Twenty-two patients, requiring extraction of two bicuspids for orthodontic reasons, were recruited. In each individual, following blinding and allocation concealment, one intact premolar received conventional AE, whereas the contralateral premolar received SEP with a split-mouth design. Bonded brackets remained in the oral cavity for two months. Afterward, the teeth were extracted without debonding the brackets. SBS and adhesive remnant index (ARI) were measured using a Universal Instron machine and a stereomicroscope, respectively. Results: The mean SBS of the conventional AE and SEP groups was 9.53 and 9.20 MPa, respectively. Paired t-test showed no statistically significant difference between the two groups (P=0.096). Comparison of ARI between the two groups, using Wilcoxon test, indicated that significantly less adhesive remained on enamel with brackets bonded with SEP compared to brackets bonded with conventional AE (P<0.001) although the SBS was higher in the AE group. Conclusion: The present study indicated that although there is no significant difference in SBS between SEP and conventional AE for bonding orthodontic metal brackets, the amount of residual adhesive on the enamel surface is significantly less with SEP than with conventional AE. (IRCT registration number: IRCT201705099086N3).

Author(s):  
Nasrin Farhadian ◽  
Amirfarhang Miresmaeili ◽  
Vahid Shahidi Zandi

Objectives: The purpose of this randomized clinical trial (RCT) was to compare the shear bond strength (SBS) of orthodontic brackets bonded to enamel with conventional acid-etch (AE) technique and self-etching primers (SEP). Materials and Methods: Twenty-two patients, requiring extraction of two bicuspids for orthodontic reasons, were recruited. In each individual, following blinding and allocation concealment, one intact premolar received conventional AE, whereas the contralateral premolar received SEP with a split-mouth design. Bonded brackets remained in the oral cavity for two months. Afterward, the teeth were extracted without debonding the brackets. SBS and adhesive remnant index (ARI) were measured using a Universal Instron machine and a stereomicroscope, respectively. Results: The mean SBS of the conventional AE and SEP groups was 9.53 and 9.20 MPa, respectively. Paired t-test showed no statistically significant difference between the two groups (P=0.096). Comparison of ARI between the two groups, using Wilcoxon test, indicated that significantly less adhesive remained on enamel with brackets bonded with SEP compared to brackets bonded with conventional AE (P<0.001) although the SBS was higher in the AE group. Conclusion: The present study indicated that although there is no significant difference in SBS between SEP and conventional AE for bonding orthodontic metal brackets, the amount of residual adhesive on the enamel surface is significantly less with SEP than with conventional AE. (IRCT registration number: IRCT201705099086N3).


2007 ◽  
Vol 77 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Güvenç Basaran ◽  
Törün Özer ◽  
Nükhet Berk ◽  
Orhan Hamamcı

Abstract Objective: To test the shear bond strength, surface characteristics, and fracture mode of brackets that are bonded to enamel etched with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser operated at different power outputs: 0.5 W, 1 W, and 2 W. Materials and Methods: Human premolars that had been extracted for orthodontic purposes were used. Enamel was etched with an Er,Cr:YSGG laser system operated at one of three power outputs or with orthophosphoric acid. Results: The shear bond strength associated with the 0.5-W laser irradiation was significantly less than the strengths obtained with the other irradiations. Both the 1-W and 2-W laser irradiations were capable of etching enamel in the same manner. This finding was confirmed by scanning electron microscopy examination. The evaluation of adhesive-remnant-index scores demonstrated no statistically significant difference in bond failure site among the groups, except for the 0.5-W laser–etched group. Generally, more adhesive was left on the enamel surface with laser irradiation than with acid etching. Conclusion: The mean shear bond strength and enamel surface etching obtained with an Er,Cr: YSGG laser (operated at 1 W or 2 W for 15 seconds) is comparable to that obtained with acid etching.


2008 ◽  
Vol 78 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Mona A. Montasser ◽  
James L. Drummond ◽  
Carla A. Evans

Abstract Objective: To compare rebonding of orthodontic brackets based on the hypothesis that no difference would be found between the adhesive systems with respect to shear bond strength, mode of failure, and clinical failure rates. Materials and Methods: The three adhesive systems included two self-etch primers (Transbond and M-Bond) and a conventional phosphoric acid etch (Rely-a-Bond). The sample size was 20 premolars for each adhesive system. The shear bond strength was tested 24 hours after bracket bonding with the bonding/debonding procedures repeated two times after the first debonding. Bond strength, adhesive remnant index (ARI), and failure sites were evaluated for each debonding. Statistical analysis consisted of a two-way analysis of variance (ANOVA) followed by Scheffè analysis. The clinical portion evaluated 15 patients over a 12-month period. Results: The mean shear bond strengths after the first, second, and third debondings for Rely-a-Bond were 8.4 ± 1.8, 10.3 ± 2.4, and 14.1 ± 3.3 MPa, respectively; for Transbond 11.1 ± 4.6, 13.6 ± 4.5, and 12.9 ± 4.4 MPa, respectively; and for M-Bond 8.7 ± 2.7, 10.4 ± 2.4, and 12.4 ± 3.4 MPa, respectively. After the three debondings the mean shear bond strength increased significantly from the first to the third debonding for Rely-a-Bond and M-bond (P ≤ .001), but did not change for Transbond (P = .199). Conclusions: The original hypothesis is not rejected. The two self-etching primers showing higher or comparable bond strength to the conventional phosphoric etch with less adhesive remnant on the enamel surface after the first debonding. With repeated bonding/debonding, the differences in the bond strength, ARI, and failure site were not significantly different. There was no difference in the clinical performance of the three adhesive systems (P = .667).


2020 ◽  
Vol 31 (1) ◽  
pp. 52-56
Author(s):  
Gustavo Vallandro Lopes ◽  
Lourenço Correr-Sobrinho ◽  
Américo Bortolazzo Correr ◽  
Ana Paula Terossi de Godoi ◽  
Silvia Amélia Scudeler Vedovello ◽  
...  

Abstract The present study was evaluated the effect of different light activation and thermocycling methods on the shear bond strength (SBS) and on the adhesive remnant index (ARI) of metal brackets bonded to feldspathic ceramic. Hundred metal brackets were bonded to 20 porcelain cylinders, divided into four groups (n=25) based on light activation and thermocycling processes. The cylinders were etched with 10% hydrofluoric acid for 60 s and coated with two layers of silane. The brackets were bonded with Transbond XT composite resin. Light activation in Groups 1 and 3 was performed during 3 s using the VALO Ortho Cordless appliance with irradiance 3,200 mW/cm2 and in Groups 2 and 4 for 40 s using Optilight Max appliance with irradiance 1,200 mW/cm². The samples were stored in deionized water at 37°C for 24 h and the samples from Groups 1 and 2 were submitted to the SBS test at a rate of 1 mm/min, whereas the samples from Groups 3 and 4 were submitted to 7,000 thermal cycles (5°/55°C) before to the SBS test. The data were assessed by two-way analysis of variance and by Tukey’s test (a=0.05). No significant difference was observed between SBS means in the different light activation devices used. The samples subjected to thermocycling revealed lower SBS values (p≤0.05). There was predominance of score 0 for ARI in all groups. Therefore, the different light activation methods did not interfere in SBS, but thermocycling reduced SBS.


2011 ◽  
Vol 82 (1) ◽  
pp. 158-164 ◽  
Author(s):  
Maria Francesca Sfondrini ◽  
Esmeralda Xheka ◽  
Andrea Scribante ◽  
Paola Gandini ◽  
Giuseppe Sfondrini

Abstract Objective: To test the null hypothesis that there is no significant difference in the shear bond strength (SBS) and Adhesive Remnant Index (ARI) scores of new vs reconditioned self-ligating brackets. Materials and Methods: One hundred and twenty permanent extracted bovine teeth were embedded in resin blocks. Three different new and reconditioned self-ligating orthodontic brackets (Smart Clip [3M Unitek]; Quick [Forestadent]; and Damon3MX [Ormco]) were tested. Scanning electron microphotographs of the different new (groups 1, 3, and 5) and reconditioned (groups 2, 4, and 6) bracket bases were taken before starting the experiments. Brackets were then bonded to the teeth using an orthodontic adhesive and were then tested in shear mode using an Instron Universal Testing Machine. ARI scores were then recorded. Statistical analysis was performed to determine significant differences in SBS and ARI Scores. Results: Smart Clip and Damon3MX reconditioned brackets showed significantly lower SBS than did new ones. On the contrary, Quick reconditioned brackets showed significantly higher SBS than did new ones. No significant differences in ARI scores were found after the reconditioning process for the three different brackets tested. Conclusion: The in-office reconditioning procedure alters the SBS of self-ligating brackets, although SBS values still remain clinically acceptable.


2009 ◽  
Vol 79 (1) ◽  
pp. 133-137 ◽  
Author(s):  
Matheus Melo Pithon ◽  
Antonio Carlos de Oliveira Ruellas ◽  
Eduardo Franzotti Sant'Anna ◽  
Márlio Vinícius de Oliveira ◽  
Luiz Antônio Alves Bernardes

Abstract Objective: To evaluate bonding efficacy of activated Transbond Plus Self-Etching Primer (TPSEP) used at different time points with Transbond XT to bond metallic orthodontic brackets to bovine incisors. Materials and Methods: The inferior incisors of 210 bovines were randomly divided into seven groups (n = 30). TPSEPs were mixed, activated, and kept activated for 30 (group 30), 21 (group 21), 15 (group 15), 7 (group 7), 3 (group 3), or 1 (group 1) days before bonding, and in one group (group 0) TPSEP was used immediately after mixed. At day zero, incisors in each group were bonded in exactly the same way. After applying TPSEP, brackets were bonded with Transbond XT, according to the manufacturer's instructions. After 24 hours, shear bond strength (SBS) tests were performed for all samples at a crosshead speed of 0.5 mm/min, and the Adhesive Remnant Index was scored. Results: There were no significant differences between the SBS of groups 0, 1, 3, 7, and 15 (P &gt; .05) However, those groups had higher SBS (P &lt; .05) compared with groups 21 and 30. No significant difference (P &gt; .05) was observed between groups 21 and 30. Despite the decrease in SBS for groups 21 and 30, bond strength values were still satisfactory. Conclusion: After activation, the TPSEP mix can be stored for a period of 15 days without losing its adhesive properties.


2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


2013 ◽  
Vol 14 (5) ◽  
pp. 866-870 ◽  
Author(s):  
Emad F Al Maaitah ◽  
Sawsan Alomari ◽  
Elham S Abu Alhaija ◽  
Ahmed AM Saf

ABSTRACT Aim To assess the effect of different bracket base conditioning method on shear bond strength (SBS) of rebonded brackets. Materials and methods Eighty brackets were bonded to freshly extracted premolar teeth using light cured composite adhesive. SBS was measured for 20 random samples as control group (G1). After debonding, 60 debonded brackets were allocated randomly into three groups of bracket base conditioning methods to remove the remaining adhesives. G2: bracket base cleaned with slow speed round carbide bur (CB), G3: cleaned with ultrasonic scaler (US), G4: cleaned with sandblasting (SB). After that, brackets were rebonded in the same manner as first bonding and SBS was measured. Modified adhesive remnant index (ARI) was recorded for all groups. Results SBS for new brackets was 11.95 MPa followed by 11.65 MPa for G2, 11.56 MPa for G4 and 11.04 MPa for G3 group. There were no statistically significant differences between all groups (p = 0.946). In all groups, failure mode showed that the majority of adhesive composite remained on the bracket base with ARI of 4. There was no statistically significant difference between all groups in ARI (p = 0.584). Conclusion In-office methods; slow speed CB and US are effective, quick and cheap methods for bracket base cleaning for rebonding. How to cite this article Al Maaitah EF, Alomari S, Alhaija ESA, Safi AAM. The Effect of Different Bracket Base Cleaning Method on Shear Bond Strength of Rebonded Brackets. J Contemp Dent Pract 2013;14(5):866-870.


2019 ◽  
Vol 24 (4) ◽  
pp. 33.e1-33.e8 ◽  
Author(s):  
Fereshteh Shafiei ◽  
Ahmadreza Sardarian ◽  
Reza Fekrazad ◽  
Amin Farjood

ABSTRACT Objective: The aim of this study was to compare the effects of three enamel etching modes - laser-etch, self-etch and acid-etch (5, 10 and 15 s) - on bracket bonding, using a universal adhesive. Methods: Eighty-four maxillary premolars were randomly divided into seven groups (n=12) based on the etching method and the adhesive used for bracket bonding. After water storage and thermocycling, shear bond strength was measured, and adhesive remnant index scores on debonded enamel were determined. Results: There were significant differences between the seven groups regarding bond strength values (p< 0.001). The highest values were observed in universal adhesive with laser etching group, while Transbond XT with acid or laser etching, and universal adhesive used in self-etch mode demonstrated the lowest bond strength. The universal adhesive with the three different etching times presented with statistically similar results, all showing an improvement in bond strength, compared with Scotchbond universal (SBU)/SE. Conclusions: The universal adhesive evaluated in the present study demonstrated statistically similar bond strengths to conventional orthodontic adhesive in self-etch mode. The bond strength can be improved by adding an initial acid etching or laser conditioning step, although enamel damage was observed in some cases.


2018 ◽  
Vol 23 (6) ◽  
pp. 64-72
Author(s):  
Catielma Nascimento Santos ◽  
Felipe de Souza Matos ◽  
Sigmar de Mello Rode ◽  
Paulo Francisco Cesar ◽  
Flávia Pardo Salata Nahsan ◽  
...  

Abstract Objective: To assess the short-term effect of two in vitro erosive challenge protocols on the bond strength of metal orthodontic brackets on bovine enamel. Methods: Sixty bovine incisors were selected and randomly divided into six groups: AS7 (artificial saliva - 7 days, Control Group); CC7 (Coca-Cola™ - 7 days); LJ7 (lime juice - 7 days); AS30 (artificial saliva - 30 days, Control Group); CC30 (Coca-Cola™ - 30 days); LJ30 (lime juice - 30 days). Microhardness testing was performed prior to the erosive challenge to verify the standardization of samples. Immersion was performed 4x/day for five minutes, for either 7 or 30 days. After immersions were concluded, the brackets were bonded and shear bond strength was assessed after 48 hours. The Adhesive Remnant Index (ARI) was also assessed. Data were analyzed by two-way ANOVA, followed by Tukey’s post-hoc and Student’s t test for paired samples, and the Kruskal-Wallis non-parametric test (α = 5%). Results: The mean and standard deviation of microhardness testing of total samples were 281.89 ± 44.51 KHN. There was no statistically significant difference in shear bond strength for the time factor (7 or 30 days; F5.54= 0.105; p = 0.901). However, there was a statistically significant difference for the solution factor (F5.54= 6.671; p = 0.003). These differences occurred among solutions of Saliva x Coca-Cola™ (p = 0.003) and Coca-Cola™ x Lime Juice (p= 0.029). The assessment of the Adhesive Remnant Index showed no significant difference between groups. Conclusions: The immersion time used in the erosion protocols did not affect the bond strength of brackets to teeth. Coca-Cola™ induced significantly higher shear bond strength values than lime juice and artificial saliva. However, the short term effects of 7/30 days in this in vitro study may not be extrapolated for in vivo ones. Clinical studies should be conducted, substantiating the laboratory results.


Sign in / Sign up

Export Citation Format

Share Document