Evaluating the expression of key genes involved in resistance to oxidative stress in ALL patients

Author(s):  
Seyedeh Maryam Hosseini Bandari ◽  
Mehdi Allahbakhshian Farsani ◽  
Gholamreza Khamisipour

Background: Leukemia accounts for about 8% of all cancers and causes approximately 7% of mortalities due to malignancies. Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and rare in older subjects. The aim of this study was to evaluate the expression of oxidative stress resistance genes including Catalase, manganese superoxide dismutase (MnSOD), Forkhead Box O3 (Foxo3a), and sirtuin-1 (SIRT1) in ALL patients that may be applied for therapeutic purposes in the future. Materials and Methods: In this observational case-control study, blood samples were drawn from 60 newly diagnosed ALL patients and 10 healthy individuals as a control group. After RNA extraction and cDNA synthesis, real-time polymerase chain reaction (RT-PCR) amplification was performed using specific primers for evaluating the expression of Catalase, MnSOD, Foxo3a, and SIRT1 genes. Results: The expression of all studied genes were significantly higher in ALL patients than in the control group; catalase gene, FOX gene, MnSOD gene, and SIRT1 gene were expressed 4 times (p =0.04), 4.5 times (p =0.001), 2.2 times (p =0.05) and 4.8 (p =0.01) times higher than healthy individuals in the control group respectively. However, no significant relationship between their expression and the stage of the disease and blast percentage was demonstrated (P>0.05). Conclusion: According to these results, the authors believe that the pathways involved in oxidative stress may be one of the most important causes of ALL disease's development and progression. In this regard, targeting the critical genes of these pathways can be considered a potential treatment with fewer side effects.

2018 ◽  
Vol 37 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Jelena Pantic Bisevac ◽  
Mirjana Djukic ◽  
Ivan Stanojevic ◽  
Ivana Stevanovic ◽  
Zeljko Mijuskovic ◽  
...  

SummaryBackground: Overproduction of free radicals accompanied with their insufficient removal/neutralization by antioxidative defense system impairs redox hemostasis in living organisms. Oxidative stress has been shown to be involved in all the stages of carcinogenesis and malignant melanocyte transformation. The aim of this study was to examine association between oxidative stress development and different stages of melanoma. Methods: The measured oxidative stress parameters included: superoxide anion radical, total and manganese superoxide dismutase, catalase and malondialdehyde. Oxidative stress parameters were measured spectrophotometrically in serum samples from melanoma patients (n=72) and healthy control subjects (n=30). Patients were classified according to AJCC clinical stage. Results: Average superoxide anion and malondialdehyde concentrations were significantly higher in melanoma patients than in control group, with the highest value of superoxide anion in stage III, while malondialdehyde highest value was in stage IV. The activity of total and manganese superoxide dismutase was insignificantly higher in melanoma patients than in control group, while catalase activity was significantly higher. The highest activity of total activity of manganese superoxide dismutase was in stage IV. Catalase activity was increasing with the disease progression achieving the maximum in stage III. Conclusion: Results of our study suggest that melanoma is oxidative stress associated disease, as well as deteriorated cell functioning at mitochondrial level.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Chia-Chu Liu ◽  
Chia-Fang Wu ◽  
Yung-Chin Lee ◽  
Tsung-Yi Huang ◽  
Shih-Ting Huang ◽  
...  

Environmental melamine exposure increases the risks of oxidative stress and early kidney injury. Manganese superoxide dismutase (MnSOD), glutathione peroxidase, and catalase can protect the kidneys against oxidative stress and maintain normal function. We evaluated whether their single-nucleotide polymorphisms (SNPs) could modify melamine’s effects. A total of 302 patients diagnosed with calcium urolithiasis were enrolled. All patients provided one-spot overnight urine samples to measure their melamine levels, urinary biomarkers of oxidative stress and renal tubular injury. Median values were used to dichotomize levels into high and low. Subjects carrying the T allele of rs4880 and high melamine levels had 3.60 times greater risk of high malondialdehyde levels than those carrying the C allele of rs4880 and low melamine levels after adjustment. Subjects carrying the G allele of rs5746136 and high melamine levels had 1.73 times greater risk of high N-Acetyl-β-d-glucosaminidase levels than those carrying the A allele of rs5746136 and low melamine levels. In conclusion, the SNPs of MnSOD, rs4880 and rs5746136, influence the risk of oxidative stress and renal tubular injury, respectively, in calcium urolithiasis patients. In the context of high urinary melamine levels, their effects on oxidative stress and renal tubular injury were further increased.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dan Shan ◽  
Samuel Kofi Arhin ◽  
Junzhao Zhao ◽  
Haitao Xi ◽  
Fan Zhang ◽  
...  

Background. Deficient spermatozoon motility is one of the main causes of male infertility. However, there are still no accurate and effective treatments in a clinical setting for male asthenospermia. Exploring the genes and mechanism of asthenospermia has become one of the hot topics in reproductive medicine. Our aim is to study the effect of SLRIP on human spermatozoon motility and oxidative stress. Methods. Sperm samples were collected including a normospermia group (60 cases) and an asthenospermia group (50 cases). SLIRP protein expression in spermatozoa was examined by western blotting, and relative mRNA expression of SLIRP in spermatozoa was quantified by reverse transcription polymerase chain reaction. Levels of reactive oxygen species (ROS), adenosine triphosphate (ATP) content, and the activity of manganese superoxide dismutase (MnSOD) in spermatozoa were also measured. Results. The mRNA level and protein expression of SLIRP in the asthenospermia group were significantly reduced compared with those in the normospermia group. The ROS active oxygen level in the asthenospermia group significantly increased; however, the ATP content decreased significantly as well as the activity of MnSOD. Conclusion. SLIRP regulates human male fertility, and SLIRP and sperm progressive motility are positively correlated. The expression of SLIRP is declined, oxidative damage is increased, and energy metabolism is decreased in spermatozoa of asthenospermia patients compared to normospermia participants.


2013 ◽  
Vol 304 (3) ◽  
pp. F257-F267 ◽  
Author(s):  
Nirmala Parajuli ◽  
Lee Ann MacMillan-Crow

Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hypothesized that MnSOD knockdown in the kidney augments renal damage during renal I/R. Using newly characterized kidney-specific MnSOD knockout (KO) mice the extent of renal damage and oxidant production after I/R was evaluated. These KO mice (without I/R) exhibited low expression and activity of MnSOD in the distal nephrons, had altered renal morphology, increased oxidant production, but surprisingly showed no alteration in renal function. After I/R the MnSOD KO mice showed similar levels of injury to the distal nephrons when compared with wild-type mice. Moreover, renal function, MnSOD activity, and tubular cell death were not significantly altered between the two genotypes after I/R. Interestingly, MnSOD KO alone increased autophagosome formation, mitochondrial biogenesis, and DNA replication/repair within the distal nephrons. These findings suggest that the chronic oxidative stress as a result of MnSOD knockdown induced multiple coordinated cell survival signals including autophagy and mitochondrial biogenesis, which protected the kidney against the acute oxidative stress following I/R.


Sign in / Sign up

Export Citation Format

Share Document