scholarly journals Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Chia-Chu Liu ◽  
Chia-Fang Wu ◽  
Yung-Chin Lee ◽  
Tsung-Yi Huang ◽  
Shih-Ting Huang ◽  
...  

Environmental melamine exposure increases the risks of oxidative stress and early kidney injury. Manganese superoxide dismutase (MnSOD), glutathione peroxidase, and catalase can protect the kidneys against oxidative stress and maintain normal function. We evaluated whether their single-nucleotide polymorphisms (SNPs) could modify melamine’s effects. A total of 302 patients diagnosed with calcium urolithiasis were enrolled. All patients provided one-spot overnight urine samples to measure their melamine levels, urinary biomarkers of oxidative stress and renal tubular injury. Median values were used to dichotomize levels into high and low. Subjects carrying the T allele of rs4880 and high melamine levels had 3.60 times greater risk of high malondialdehyde levels than those carrying the C allele of rs4880 and low melamine levels after adjustment. Subjects carrying the G allele of rs5746136 and high melamine levels had 1.73 times greater risk of high N-Acetyl-β-d-glucosaminidase levels than those carrying the A allele of rs5746136 and low melamine levels. In conclusion, the SNPs of MnSOD, rs4880 and rs5746136, influence the risk of oxidative stress and renal tubular injury, respectively, in calcium urolithiasis patients. In the context of high urinary melamine levels, their effects on oxidative stress and renal tubular injury were further increased.

2019 ◽  
Vol 44 (5) ◽  
pp. 1002-1013 ◽  
Author(s):  
Wen Zhang ◽  
Yunwen Yang ◽  
Huiping Gao ◽  
Yue Zhang ◽  
Zhanjun Jia ◽  
...  

Background: Some researches revealed that mitochondrial dysfunction is associated with various kidney injury. However, the role of mitochondrial dysfunction in the pathogenesis of acute kidney injury (AKI) still needs evidence. Methods: We evaluated the effect of mitochondrial complex I inhibitor rotenone on folic acid (FA)-induced AKI in mice. Results: Strikingly, the mice pretreated with rotenone at a dose of 200 ppm in food showed exacerbated kidney injury as shown by higher levels of blood urea nitrogen and creatinine compared with FA alone group. Meanwhile, both renal tubular injury score and the expression of renal tubular injury marker neutrophil gelatinase-associated lipocalin were further elevated in rotenone-pretreated mice, suggesting the deteriorated renal tubular injury. Moreover, the decrements of mitochondrial DNA copy number and the expressions of mitochondrial Cytochrome c oxidase subunit 1, mitochondrial NADH dehydrogenase subunit 1, and mitochondria-specific superoxide dismutase (SOD2) in the kidneys of FA-treated mice were further reduced in rotenone-pretreated mice, indicating the aggravated mitochondrial damage. In parallel with the SOD2 reduction, the oxidative stress markers of malondialdehyde and HO-1 displayed greater increment in AKI mice with rotenone pretreatment in line with the deteriorated apoptotic response and inflammation. Conclusion: Our results suggested that the inhibition of mitochondrial complex I activity aggravated renal tubular injury, mitochondrial damage, oxidative stress, cell apoptosis, and inflammation in FA-induced AKI.


2021 ◽  
Vol 22 (21) ◽  
pp. 11448
Author(s):  
Keiko Hosohata ◽  
Denan Jin ◽  
Shinji Takai

Oxidative stress plays an important role in the pathophysiology of acute kidney injury (AKI). Previously, we reported that vanin-1, which is involved in oxidative stress, is associated with renal tubular injury. This study was aimed to determine whether urinary vanin-1 is a biomarker for the early diagnosis of AKI in two experimental models: in vivo and in vitro. In a rat model of AKI, ischemic AKI was induced in uninephrectomized rats by clamping the left renal artery for 45 min and then reperfusing the kidney. On Day 1 after renal ischemia/reperfusion (I/R), serum creatinine (SCr) in I/R rats was higher than in sham-operated rats, but this did not reach significance. Urinary N-acetyl-β-D-glucosaminidase (NAG) exhibited a significant increase but decreased on Day 2 in I/R rats. In contrast, urinary vanin-1 significantly increased on Day 1 and remained at a significant high level on Day 2 in I/R rats. Renal vanin-1 protein decreased on Days 1 and 3. In line with these findings, immunofluorescence staining demonstrated that vanin-1 was attenuated in the renal proximal tubules of I/R rats. Our in vitro results confirmed that the supernatant from HK-2 cells under hypoxia/reoxygenation included significantly higher levels of vanin-1 as well as KIM-1 and NGAL. In conclusion, our results suggest that urinary vanin-1 might be a potential novel biomarker of AKI induced by I/R.


2021 ◽  
Vol 22 (5) ◽  
pp. 2309 ◽  
Author(s):  
Chung-Kuan Wu ◽  
Chia-Lin Wu ◽  
Tzong-Shyuan Lee ◽  
Yu Ru Kou ◽  
Der-Cherng Tarng

Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2′-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1−/− mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.


2021 ◽  
Vol 16 (1) ◽  
pp. 537-543
Author(s):  
Mei Zhang ◽  
Jing Yuan ◽  
Rong Dong ◽  
Jingjing Da ◽  
Qian Li ◽  
...  

Abstract Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 572
Author(s):  
Jung-Yeon Kim ◽  
Jungmin Jo ◽  
Jaechan Leem ◽  
Kwan-Kyu Park

Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.


2017 ◽  
Vol 36 (5) ◽  
pp. 386-394 ◽  
Author(s):  
Jing Ying Ma ◽  
Sandra Snook ◽  
Sheryl Garrovillo ◽  
Charles Johnson ◽  
David La

Immunohistochemical staining for the lysosome-associated membrane protein 2 (LAMP-2) has been proposed previously as an alternative to electron microscopy to identify hepatic phospholipidosis. This study used LAMP-2 immunohistochemistry (IHC) to diagnose phospholipidosis in rats exhibiting renal tubular injury. Rats were administered toreforant, a histamine H4 receptor antagonist by oral gavage at a dose of 3, 10, or 100 mg/kg/d for 6 months. Hematoxylin and eosin staining revealed renal tubular epithelial cell vacuolation, hypertrophy, degeneration, and luminal dilation in the 100 mg/kg/d group animals. Renal tubular injury was confirmed using kidney injury marker 1 (KIM-1) IHC. The involvement of phosopholipidosis in the renal injury was investigated by LAMP-2. Adipophilin IHC was included to differentiate phospholipidosis from lipidosis. Increased LAMP-2 staining was observed in the 100 mg/kg/d group animals when compared to vehicle group animals. Lysosome-associated membrane protein-2 staining was most prominent in the outer stripe of the outer medulla where KIM-1 staining was also most prominent. By contrast, adipophilin staining was not increased. Phospholipidosis was also confirmed by electron microscopy. These data support the use of LAMP-2 IHC as a diagnostic tool and suggest an association between phospholipidosis and the renal tubular injury caused by toreforant.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dan Shan ◽  
Samuel Kofi Arhin ◽  
Junzhao Zhao ◽  
Haitao Xi ◽  
Fan Zhang ◽  
...  

Background. Deficient spermatozoon motility is one of the main causes of male infertility. However, there are still no accurate and effective treatments in a clinical setting for male asthenospermia. Exploring the genes and mechanism of asthenospermia has become one of the hot topics in reproductive medicine. Our aim is to study the effect of SLRIP on human spermatozoon motility and oxidative stress. Methods. Sperm samples were collected including a normospermia group (60 cases) and an asthenospermia group (50 cases). SLIRP protein expression in spermatozoa was examined by western blotting, and relative mRNA expression of SLIRP in spermatozoa was quantified by reverse transcription polymerase chain reaction. Levels of reactive oxygen species (ROS), adenosine triphosphate (ATP) content, and the activity of manganese superoxide dismutase (MnSOD) in spermatozoa were also measured. Results. The mRNA level and protein expression of SLIRP in the asthenospermia group were significantly reduced compared with those in the normospermia group. The ROS active oxygen level in the asthenospermia group significantly increased; however, the ATP content decreased significantly as well as the activity of MnSOD. Conclusion. SLIRP regulates human male fertility, and SLIRP and sperm progressive motility are positively correlated. The expression of SLIRP is declined, oxidative damage is increased, and energy metabolism is decreased in spermatozoa of asthenospermia patients compared to normospermia participants.


2019 ◽  
Vol 317 (2) ◽  
pp. F264-F274 ◽  
Author(s):  
Satoshi Tanimura ◽  
Katsuyuki Tanabe ◽  
Hiromasa Miyake ◽  
Kana Masuda ◽  
Keigo Tsushida ◽  
...  

Acute kidney injury (AKI) is frequently encountered in clinical practice, particularly secondarily to cardiovascular surgery and administration of nephrotoxic agents, and is increasingly recognized for initiating a transition to chronic kidney disease. Clarifying the pathogenesis of AKI could facilitate the development of novel preventive strategies, because the occurrence of hospital-acquired AKI is often anticipated. Vasohibin-1 (VASH1) was initially identified as an antiangiogenic factor derived from endothelial cells. VASH1 expression in endothelial cells has subsequently been reported to enhance cellular stress tolerance. Considering the importance of maintaining peritubular capillaries in preventing the progression of AKI, the present study aimed to examine whether VASH1 deletion is involved in the pathogenesis of cisplatin-induced AKI. For this, we injected male C57BL/6J wild-type (WT) and VASH1 heterozygous knockout (VASH1+/−) mice intraperitoneally with either 20 mg/kg cisplatin or vehicle solution. Seventy-two hours after cisplatin injection, increased serum creatinine concentrations and renal tubular injury accompanied by apoptosis and oxidative stress were more prominent in VASH1+/− mice than in WT mice. Cisplatin-induced peritubular capillary loss was also accelerated by VASH1 deficiency. Moreover, the increased expression of ICAM-1 in the peritubular capillaries of cisplatin-treated VASH1+/− mice was associated with a more marked infiltration of macrophages into the kidney. Taken together, VASH1 expression could have protective effects on cisplatin-induced AKI probably by maintaining the number and function of peritubular capillaries.


Sign in / Sign up

Export Citation Format

Share Document