scholarly journals Acrylamide Content in Food Commodities Consumed in North Macedonia and Its Risk Assessment in the Population

Author(s):  
E. Dimitrieska-Stojkovikj ◽  
A. Angeleska ◽  
B. Stojanovska-Dimzoska ◽  
Z. Hajrilai-Musliu ◽  
D. Koceva ◽  
...  

Background: Acrylamide (AA) is an important food contaminant resulted from Maillard reaction during thermal processing of carbohydrate rich food commodities. The present paper reports the data for the AA content in some types of thermally processed starch rich food, and assessment of dietary exposure for the population in North Macedonia. Methods: The AA level was determined employing modified and validated ultra high performance liquid chromatography with tandem quadrupole detector. A total of 160 samples divided in seven most frequently consumed commodity groups were collected for determination of their AA content. Finally, chronic exposure of AA in the population was estimated. Statistical analysis was performed applying OriginPro 8 SR4 v8.0951 software package Results: The average AA levels varied from 126.9±122.4 μg/kg for bread samples to 494.5±127.1 μg/kg for French fries samples. The dietary exposure of the population from North Macedonia for the tested food commodities was estimated at 0.643±0.171 μgAA/kgbw/day. The main contributor to the total AA intake was bread, with estimated value at 0.394±0.150 μgAA/kgbw/day. The margin of exposure values were 528 and 264, respectively for neurotoxicity and non-plastic effect calculated on average intake. Conclusion: The risk assessment analysis revealed increased concern for human health regarding the neoplastic effects, especially for infants, toddlers, and adolescents. This is the first study related to AA presence in different food commodities in North Macedonia, and implies that monitoring programs and mitigation strategies must be implemented.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Babiker Yagoub Abdulkair ◽  
Amin O. Elzupir ◽  
Abdulaziz S. Alamer

An accurate IPC-UV method was developed and validated for the determination of nitrite (NI) and nitrate (NA) in meat products. The best separation was achieved on a phenyl-hexyl column (150 mm × 4.6 mm, 3 µm) with a mobile phase composed of 25% acetonitrile and 75% buffer (2 mM disodium hydrogen phosphate and 3 mM tetrabutylammonium bromide, pH = 4). Eluents were monitored at 205 nm. Linearity ranges were 1.86 × 10−6–7.5 µg·ml−1 and 0.09–5.0 µg·ml−1 for NI and NA, respectively. The correlation coefficients were greater than 0.999 for NI and NA. This method was applied to a number of processed meat products in Riyadh (n = 155). NI ranged from 1.78 to 129.69 mg·kg−1, and NA ranged from 0.76 to 96.64 mg·kg−1. Results showed extensive use of NI and NA; however, concentrations were within the legal limit of Saudi Arabia except for one sample. Further, the risk assessment and dietary exposure have been estimated for both NI and NA.


2010 ◽  
Vol 93 (5) ◽  
pp. 1503-1514 ◽  
Author(s):  
Sumita Dixit ◽  
Subhash K Khanna ◽  
Mukul Das

Abstract A simple and sensitive HPLC method has been developed for the simultaneous determination of eight permitted food colors and five commonly encountered nonpermitted colors in various food commodities, including sugar-, fat-, and starch-based food matrixes. The method uses a specific food category-based cleanup/treatment procedure before color extraction to avoid the interference of food matrixes, and to obtain the optimal color extraction. Analysis was performed on a reversed-phase C18 -Bondapak column with ammonium acetate and acetonitrile gradient elution as the mobile phase; a programmable max-specific visible detection was used to monitor colors to obtain the higher sensitivity and expanded scope needed for multicolor blends having diverse absorption maxima. All colors showed good linearity, with regression coefficients of 0.99740.9999. The LOD and LOQ values ranged from 0.01 to 0.12 mg/L, and from 0.04 to 0.83 mg/L or mg/kg, respectively. The intraday and interday precision tests produced good RSD values, and the recoveries from different food matrixes ranged from 82 to 104%. The method offers high sensitivity for analysis of a wide variety of food matrixes containing a broad scope of multicolor blends. Two nonpermitted colors, orange II and metanil yellow, were found. Also, a number of samples contained permitted colors at levels two-to seven-fold higher than those prescribed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3319
Author(s):  
Nokwanda Hendricks ◽  
Olatunde Stephen Olatunji ◽  
Bhekumuzi Prince Gumbi

Fullerenes engineered nanomaterials are regarded as emerging environmental contaminants. This is as their widespread application in many consumer products, as well as natural release, increases their environmental concentration. In this work, an ultrasonic-assisted pressurized liquid extraction (UAPLE) method followed by high performance liquid chromatography with ultraviolet-visible detector (HPLC-UV-vis) was developed for extraction and determination of fullerene in sediments. The method was validated and found to be suitable for environmental risk assessment. Thereafter, the method was used for the determination of fullerene (C61-PCBM) in sediment samples collected from Umgeni River, South Africa. The current method allows for adequate sensitivity within the linear range of 0.01–4 µg g−1, method limit detection of 0.0094 µg g−1 and recoveries ranged between 67–84%. All the parameters were determined from fortified sediments samples. The measured environmental concentration (MEC) of fullerene in the sediment samples ranged from not detected to 30.55 µg g−1. To the best of our knowledge, this is the first report on the occurrence and ecological risk assessment of carbonaceous fullerene nanoparticles in African sediments and biosolids.


Sign in / Sign up

Export Citation Format

Share Document