scholarly journals In Vivo Corneal Microstructural Changes in Herpetic Stromal Keratitis: A Spectral-Domain Optical Coherence Tomography Analysis

Author(s):  
Alejandro Rodriguez-Garcia ◽  
Raul Alfaro-Rangel ◽  
Andres Bustamante-Arias ◽  
Julio C. Hernandez-Camarena

Purpose: To describe and analyze the microstructural changes in herpetic stromal keratitis (HSK) observed in vivo by spectral-domain ocular coherence tomography (SD-OCT) at different stages of the disease. Methods: A prospective, cross-sectional, observational, and comparative SD-OCT analysis of corneas with active and inactive keratitis was performed, and the pathologic differences between the necrotizing and non-necrotizing forms of the disease were analyzed. Results: Fifty-three corneas belonging to 43 (81.1%) women and 10 (18.8%) men with a mean age of 41.0 years were included for analysis. Twenty-four (45.3%) eyes had active keratitis, and 29 (54.7%) had inactive keratitis; the majority (83.0%) had the non-necrotizing form. Most corneas (79.1%) with active keratitis showed stromal edema and inflammatory infiltrates. Almost half of the active lesions affected the visual axis, were found at mid-stromal depth, and had a medium density. By contrast, corneas with inactive keratitis were characterized by stromal scarring (89.6%), epithelial remodeling (72.4%), and stromal thinning (68.9%). In contrast to non-necrotizing corneas, those with necrotizing HSK showed severe stromal scarring, inflammatory infiltration, and thinning. Additionally, most necrotizing lesions (77.7%) affected the visual axis and had a higher density (P = 0.010). Conclusion: Active HSK is characterized by significant epithelial and stromal thickening and the inactive disease manifests epithelial remodeling at sites of stromal thinning due to scarring. Necrotizing keratitis is characterized by distorted corneal architecture, substantial stromal inflammatory infiltration, and thinning. In vivo SD-OCT analysis permitted a better understanding of the inflammatory and repair mechanisms occurring in this blinding corneal disease.

2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Anand Vinekar ◽  
Shwetha Mangalesh ◽  
Chaitra Jayadev ◽  
Ramiro S. Maldonado ◽  
Noel Bauer ◽  
...  

Spectral domain coherence tomography (SD OCT) has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Anderson Teixeira ◽  
Flavio A. Rezende ◽  
Camila Salaroli ◽  
Nonato Souza ◽  
Benedito Antonio Sousa ◽  
...  

Purpose. To investigate thein vivoincision architecture using spectral domain optical coherence tomography (SD-OCT) in 23-gauge and 25-gauge transconjunctival suturelesspars planavitrectomy (TSPPV).Methods. A prospective observational study of 22 eyes of 22 patients that underwent three-port 25-gauge (10 eyes) or 23-gauge (12 eyes) TSPPV was performed. The three sclerotomies sites in each eye were analyzed by Corneal Adapter Model (CAM) RTVue SD-OCT (Optovue Inc., Fremont, CA, USA) with wound cross-section images (longitudinal and transversal) on days 1, 7, and 30 postoperatively. Transversal and longitudinal length, location, angle between the conjunctival surface tangent and the incision plane, and architecture deformations were evaluated.Results. All patients (22 eyes) completed the study and surgeries lasted less than 60 minutes. All wounds were obliquely performed, 23-gauge mean angle was 23 ± 5°, and 25-gauge angule was 21 ± 4°. Twenty-three-gauge sclerotomy transversal mean length was 1122 ± 242 μm and 25-gauge transversal sclerotomy mean length was 977 ± 174 μm; 23-gauge longitudinal mean length was 363 ± 42 μm and 25-gauge longitudinal sclerotomy mean length was 234 ±19 μm; 23-gauge open wound thickness mean was 61 ± 28 μm and 25-gauge open wound thickness mean was 22 ± 6 μm. All results were statistically significant (P<0.05). No vitreous incarceration or silicone oil residue was observed in incision sites with both gauges.Conclusions. The 23-gauge and 25-gauge architectural wound constructions were well visualized using CAM SD-OCT. Statistical differences between the two gauges were observed throughout the study period.


2013 ◽  
Vol 07 (02) ◽  
pp. 98 ◽  
Author(s):  
Dominik Odrobina ◽  
Piotr Gozdek ◽  
Mariusz Maroszyński ◽  
Iwona Laudańska-Olszewska ◽  
◽  
...  

Central serous chorioretinopathy (CSC) was first described more than 140 years ago. Due to the rapid development in modern imaging methods, better understanding of changes occurring in the retina in CSC is possible. Spectral-domain optical coherence tomography (SDOCT) has increased our ability to study this disease, especially microstructural changes during active phase and after resolution of CSC. SD-OCT enables a highly detailedin vivoevaluation of the individual retinal layers especially external limiting membrane (ELM), the inner and outer segments of photoreceptors and changes in retinal pigment epithelium (RPE), which are the most essential and important in described disease. It allows us better understand pathogenesis of CSC.


Ophthalmology ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1102-1110 ◽  
Author(s):  
Toine Hillenaar ◽  
Hugo van Cleynenbreugel ◽  
Georges M.G.M. Verjans ◽  
René J. Wubbels ◽  
Lies Remeijer

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
M. Esmaeili ◽  
A. M. Dehnavi ◽  
H. Rabbani

Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used interferometric diagnostic technique in ophthalmology that provides novel in vivo information of depth-resolved inner and outer retinal structures. This imaging modality can assist clinicians in monitoring the progression of Age-related Macular Degeneration (AMD) by providing high-resolution visualization of drusen. Quantitative tools for assessing drusen volume that are indicative of AMD progression may lead to appropriate metrics for selecting treatment protocols. To address this need, a fully automated algorithm was developed to segment drusen area and volume from SD-OCT images. The proposed algorithm consists of three parts: (1) preprocessing, which includes creating binary mask and removing possible highly reflective posterior hyaloid that is used in accurate detection of inner segment/outer segment (IS/OS) junction layer and Bruch’s membrane (BM) retinal layers; (2) coarse segmentation, in which 3D curvelet transform and graph theory are employed to get the possible candidate drusenoid regions; (3) fine segmentation, in which morphological operators are used to remove falsely extracted elongated structures and get the refined segmentation results. The proposed method was evaluated in 20 publically available volumetric scans acquired by using Bioptigen spectral-domain ophthalmic imaging system. The average true positive and false positive volume fractions (TPVF and FPVF) for the segmentation of drusenoid regions were found to be 89.15% ± 3.76 and 0.17% ± .18%, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Rachel L. Chu ◽  
Nicole A. Pannullo ◽  
Christopher R. Adam ◽  
Mohammad R. Rafieetary ◽  
Eric J. Sigler

The objective of this study is to describe the clinical utility and morphologic characteristics of peripheral vitreoretinal interface abnormalities with spectral domain optical coherence tomography (SD-OCT). A prospective imaging analysis of 43 patients with peripheral vitreoretinal interface abnormalities seen on binocular indirect examination with scleral indentation was done. SD-OCT was evaluated for image quality and structural findings. Laser retinopexy was performed to surround all retinal breaks containing a full-thickness component via SD-OCT. Acceptable image quality for inclusion was obtained in 39/43 (91%) patients. Mean age was 41 ± 22 years, and mean follow-up was 14 ± 1.6 months. Decision to treat was altered following SD-OCT in 5% of the patients. Two cases of previously diagnosed operculated holes were found on SD-OCT to be partial-thickness operculated breaks or focal operculated schisis. Peripheral SD-OCT is a reliable and useful technique to examine the structural features of vitreoretinal interface abnormalities in vivo. This imaging modality is useful in the clinical management of suspected retinal breaks identified with indirect ophthalmoscopy.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Shasha Yu ◽  
Chengzhe Lu ◽  
Xin Tang ◽  
Xiaoyong Yuan ◽  
Bo Yuan ◽  
...  

Objectives. To objectively evaluate posterior capsular opacification (PCO) with RTVue-100 spectral domain-OCT and assess the agreement with the Pentacam system. Methods. Sixty-seven eyes diagnosed with PCO were included. RTVue-100 SD-OCT was used to scan the IOL outline and PCO at horizontal and vertical meridians. PCO was also imaged with a Pentacam and slit-lamp photography system. With RTVue-100 SD-OCT, the PCO area, thickness, density, and objective scores were recorded and used to evaluate the severity of PCO at 3 mm and 5 mm diameter ranges of the IOL optic region. We assessed the correlation of visual acuity, PCO characteristics, and PCO scores. PCO scores acquired from RTVue-100 SD-OCT images were also compared with those from the Pentacam. Differences between pear-type and fibrosis-type PCOs were also compared using RTVue-100 SD-OCT cross-sectional images. Results. The cross-sectional images of PCO acquired with RTVue-100 SD-OCT corresponded well to Pentacam and slit-lamp retroillumination images. IOL-posterior capsular space, area, thickness, and density of the proliferated and accumulated LECs could be clearly visualized and quantified with RTVue-100 SD-OCT. PCO scores were correlated with decreased visual acuity, which was in line with the outcomes using the Pentacam. Differences between the pear-type and fibrosis-type PCO were statistically significant; pear-type PCOs showed a wider and thicker opacification region with lower density compared with fibrosis-type PCOs. Conclusion. RTVue-100 SD-OCT could be a powerful tool in PCO objective evaluation and classification. OCT could be used to visualize the morphology and outline of PCO. Thus, it could discriminate and quantify differences between different types of PCO. PCO scores seem to be a useful factor that could reliably reflect PCO severity.


Sign in / Sign up

Export Citation Format

Share Document