scholarly journals A Novel De Novo Chromosomal Insertion, 46 XX, ins(7:13)(p14; q14.2q21.1) is Related to the Embryo Development Arrest Following Assisted Reproductive Technique

Author(s):  
Azam Azargoon ◽  
Nahid Azad

Background: Infertility is a problem affecting a large number of couples in the world. One of the causes of infertility can be chromosomal rearrangements such as insertions. In this case report study, the outcome of two intra-cytoplasmic sperm injection (ICSI) cycles of an infertile woman with de novo chromosomal insertion is explained. Case Presentation: A couple with a 10-year history of infertility referred to our infertility clinic. The husband had a daughter in his first previous marriage. The wife had a 7 and a 10 year history of infertility in the first and second marriages, respectively. In the first marriage, she reported a history of 2 failed intra-uterine insemination (IUI) cycles. In the second marriage, she had a history of 1 spontaneous abortion at 12 weeks of pregnancy, 4 failed IUI cycles, and 1 failed ICSI cycle. The couple was subjected to ICSI cycles twice and failed due to embryo development arrest. The couple referred for karyotyping. The husband showed a normal male karyotype. In comparison, the wife revealed an abnormal female karyotype with two rearrangements: chromosome 13 with an interstitial deletion between bands q14.2 and q21.1, and a derivative chromosome 7 containing this segment of chromosome 7 as an insertion onto short arm at the p14 position. Conclusion: To the best of our knowledge, this is the first report of insertion 46 XX, ins(7:13)(p14; q14.2q21.1) which is associated with the embryo development arrest following assisted reproductive technique.

Author(s):  
Д.А. Юрченко ◽  
М.Е. Миньженкова ◽  
Ж.Г. Маркова ◽  
Е.Л. Дадали ◽  
Н.В. Шилова

Введение. Дериватная хромосома (der) - структурно аномальная хромосома, формирование которой может происходить как в результате перестроек с участием двух и более негомологичных хромосом, так и вследствие аберраций внутри одной хромосомы. Дифференциальная диагностика дериватных хромосом очень важна для выяснения происхождения хромосомной аномалии и для определения тактики медико-генетического консультирования с целью оценки повторного риска рождения ребенка с хромосомным дисбалансом. В данной работе представлены семь случаев дериватной хромосомы 8, имеющих различное происхождение и механизмы формирования, а также протокол обследования пациентов с дериватной хромосомой 8 в кариотипе. Цель: изучить структуру и механизмы формирования дериватных хромосом 8. Методы: стандартное цитогенетическое исследование, M-FISH, MCB8, FISH с локус-специфичными субтеломерными ДНК-зондами, FISH с несерийными ДНК-зондами на район р23.1 хромосомы 8. Результаты. В результате проведенного стандартного цитогенетического исследования в кариотипе семи неродственных пробандов была обнаружена дериватная хромосома 8. При использовании цитогенетического и молекулярно-цитогенетического подходов было установлено, что у четырех пациентов дериватная хромосома 8 возникла в результате инвертированной дупликации/делеции 8р, а у трех - несбалансированной транслокации с участием хромосомы 8: der(8)t(8;17), der(8)t(8;12) и der(8)t(7;8). Во всех случаях был определен механизм формирования хромосомных перестроек. Дериватные хромосомы транслокационного происхождения в двух случаях были сформированы de novo, а в одном случае - как результат патологической мейотической сегрегации отцовской реципрокной транслокации. Все дериватные хромосомы с инвертированной дупликацией/делецией 8р были следствием эктопической рекомбинации. Заключение. Представленные результаты демонстрируют целесообразность комплексного лабораторного подхода в изучении структуры и происхождения дериватной хромосомы 8. Характеристика происхождения хромосомного дисбаланса является неотъемлемой частью обследования пациентов со структурно аномальной хромосомой 8 в кариотипе. Background. Derivative chromosome (der) is a structurally abnormal chromosome, the formation of which can occur as a result of rearrangements with the participation of two or more non-homologous chromosomes, or be the result of aberrations within one chromosome. Differential diagnosis of derivative chromosomes is very important for clarifying the origin of the chromosomal abnormality and for determining the tactics of medical genetic counseling in order to assess the repeated risk of chromosomal imbalance. This work presents seven cases of a derivative chromosome with different origins and mechanisms of formation, as well as a protocol for examining patients with derivative chromosome 8 in the karyotype. Aim: to study the structure and mechanisms of formation of the derivative chromosome 8. Methods. GTG-banded chromosomal analysis, M-FISH, MCB8, FISH with subtelomeric DNA probes, FISH with home-made DNA probes for 8p23.1. Results. As a result of a conventional cytogenetic study of seven unrelated probands a derivative chromosome 8 was found. In all cases, the mechanism of the formation of chromosomal rearrangements was determined. Derivative chromosomes of translocation origin were formed de novo in two cases- der(8)t(8;12) and der(8)t(7;8), and in one case -der(8)t(8;17) - as a result of malsegregation of the paternal reciprocal translocation. In the remaining four cases, the derivative chromosomes were identified as an inverted duplication/deletion 8p due to ectopic recombination. Conclusion. The presented results demonstrate the feasibility of an integrated laboratory approach in the diagnosis of derivative chromosome 8. Characterization of the origin of chromosomal imbalance is an integral part of the examination of patients with structurally abnormal chromosome 8 in the karyotype.


2017 ◽  
Vol 1 (2) ◽  
pp. 26-32
Author(s):  
Dur e Shehwar ◽  
Lubna Zubair

Abstract:Background: Ectopic pregnancy is the implantation of a fertilized ovum anywhere outside the uterine cavity. Around 95% of ectopic pregnancies occur in the Fallopian tubes. Most of these are occurring in the ampulla region. Other sites include the interstitial or the corneal region of the myometrium, cervix, ovary, peritoneal cavity (abdominal pregnancy) and in caesarean section scars. The objective of this study was to see the association of different risk factors of ectopic pregnancy.Methodology: It was a case-control study. The data was collected from Obstetrics & Gynaecology department Jinnah Hospital, Lahore and the study was completed at Gulab Devi PGMI, Lahore. For the analysis of data, SPSS version 16.00 was used.Results: 180 pregnant females were taken in which 90 were cases and 90 were controls. 16 females were more than 35 years in age of which 16% females had ectopic pregnancy. There were 3 females had history of smoking in which 3% females had ectopic pregnancy. There were 82 females who had history of pelvic surgery in which 43% female had ectopic pregnancy. There were 17 females have had history of previous ectopic pregnancy of which 14% were having ectopic pregnancy. There were 6 females have had history of IUCD (Intra uterine contraceptive device) of which 6% females were having ectopic pregnancy. There were 23 females who had history of PID (Pelvic inflammatory disease) of which 26% females were having ectopic pregnancy. There were 2 females have had history of tubal disease and had ectopic pregnancy. There were 21 females who had history of ART (Assisted reproductive technique) in which 3% females were presented with ectopic pregnancy. There was 1 female who had history of endometriosis in which 2% females were presented with ectopic pregnancy.There were 16 females have had history of low socioeconomic status of which 9% females were presented with ectopic pregnancy. There was 1 female who had history of tuberculosis and having ectopic pregnancy.Conclusion: In the present study age more than 35 years, smoking, previous ectopic pregnancy, insertion of IUCD, PID, assisted reproductive technique, tubal disease, history of pelvic surgery, endometriosis and tuberculosis had a great association with ectopic pregnancy.


2017 ◽  
Vol 06 (03) ◽  
pp. 165-168 ◽  
Author(s):  
Luis Mendez-Rosado ◽  
Araceli Lantigua ◽  
Juan Galarza ◽  
Ahmed Hamid Al-Rikabi ◽  
Monika Ziegler ◽  
...  

AbstractGain of copy numbers can be due to different chromosomal rearrangements such as direct or indirect duplications, translocations, small supernumerary marker chromosomes, or insertions. In a 3-year-old boy with dysmorphic features and developmental delay, chromosome analyses revealed a derivative chromosome 5. Microdissection and reverse fluorescence in situ hybridization identified the in 5p13.1 inserted part as 17p12-p11.2 material. Thus the patient suffered from a rare combination of genomic disorder, that is, Charcot-Marie-Tooth disease type 1A and Potocki-Lupski syndrome. Parental studies indicated that the abnormality was de novo in origin. As the question how this rearrangement arose cannot be answered conclusively, formal genetic counseling is warranted, which includes a discussion regarding the possibility of gonadal mosaicism. In conclusion, this case highlights that chromosome 17p is genetically relatively instable, and thus it can lead to rare chromosomal conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher M. Grochowski ◽  
Ana C. V. Krepischi ◽  
Jesper Eisfeldt ◽  
Haowei Du ◽  
Debora R. Bertola ◽  
...  

Chromoanagenesis is a descriptive term that encompasses classes of catastrophic mutagenic processes that generate localized and complex chromosome rearrangements in both somatic and germline genomes. Herein, we describe a 5-year-old female presenting with a constellation of clinical features consistent with a clinical diagnosis of Coffin–Siris syndrome 1 (CSS1). Initial G-banded karyotyping detected a 90-Mb pericentric and a 47-Mb paracentric inversion on a single chromosome. Subsequent analysis of short-read whole-genome sequencing data and genomic optical mapping revealed additional inversions, all clustered on chromosome 6, one of them disrupting ARID1B for which haploinsufficiency leads to the CSS1 disease trait (MIM:135900). The aggregate structural variant data show that the resolved, the resolved derivative chromosome architecture presents four de novo inversions, one pericentric and three paracentric, involving six breakpoint junctions in what appears to be a shuffling of genomic material on this chromosome. Each junction was resolved to nucleotide-level resolution with mutational signatures suggestive of non-homologous end joining. The disruption of the gene ARID1B is shown to occur between the fourth and fifth exon of the canonical transcript with subsequent qPCR studies confirming a decrease in ARID1B expression in the patient versus healthy controls. Deciphering the underlying genomic architecture of chromosomal rearrangements and complex structural variants may require multiple technologies and can be critical to elucidating the molecular etiology of a patient’s clinical phenotype or resolving unsolved Mendelian disease cases.


2021 ◽  
Author(s):  
Xiaolin Hu ◽  
Elizabeth K Baker ◽  
Jodie Johnson ◽  
Stephanie Balow ◽  
Loren D.M. Pena ◽  
...  

Abstract Background Unbalanced translocations may be de novo or inherited from one parent carrying the balanced form and are usually present in all cells. Mosaic unbalanced translocations are extremely rare with a highly variable phenotype depending on the tissue distribution and level of mosaicism. Mosaicism for structural chromosomal abnormalities is clinically challenging for diagnosis and counseling due to the limitation of technical platforms and complex mechanisms, respectively. Here we report a case with a tremendously rare maternally-derived mosaic unbalanced translocation of t(3;12), and we illustrate the unreported complicated mechanism using single nucleotide polymorphism (SNP) array, fluorescence in situ hybridization (FISH), and chromosome analyses. Case Presentation: An 18-year-old female with a history of microcephaly, pervasive developmental disorder, intellectual disability, sensory integration disorder, gastroparesis, and hypotonia presented to our genetics clinic. She had negative karyotype by parental report but no other genetic testing performed previously. SNP microarray analysis revealed a complex genotype including 8.4 Mb terminal mosaic duplication on chromosome 3 (3p26.3->3p26.1) with the distal 5.7 Mb involving two parental haplotypes and the proximal 2.7 Mb involving three parental haplotypes, and a 6.1 Mb terminal mosaic deletion on chromosome 12 (12p13.33->12p13.31) with no evidence for a second haplotype. Adjacent to the mosaic deletion is an interstitial mosaic copy-neutral region of homozygosity (1.9 Mb, 12p13.31). The mother of this individual was confirmed by chromosome analysis and FISH that she carries a balanced translocation, t(3;12)(p26.1;p13.31). Conclusion Taken together, the proband, when at the stage of a zygote, likely carried the derivative chromosome 12 from this translocation, and a postzygotic mitotic recombination event occurred between the normal paternal chromosome 12 and maternal derivative chromosome 12 to “correct” the partial 3p trisomy and partial deletion of 12p. To the best of our knowledge, it is the first time that a mechanism utilizing a combined cytogenetic and cytogenomic approach, and we believe it expands our knowledge of mosaic structural chromosomal disorders and provides new insight into clinical management and genetic counseling.


2018 ◽  
Vol 16 (05) ◽  
pp. 362-368 ◽  
Author(s):  
Federica Sullo ◽  
Agata Polizzi ◽  
Stefano Catanzaro ◽  
Selene Mantegna ◽  
Francesco Lacarrubba ◽  
...  

Cerebellotrigeminal dermal (CTD) dysplasia is a rare neurocutaneous disorder characterized by a triad of symptoms: bilateral parieto-occipital alopecia, facial anesthesia in the trigeminal area, and rhombencephalosynapsis (RES), confirmed by cranial magnetic resonance imaging. CTD dysplasia is also known as Gómez-López-Hernández syndrome. So far, only 35 cases have been described with varying symptomatology. The etiology remains unknown. Either spontaneous dominant mutations or de novo chromosomal rearrangements have been proposed as possible explanations. In addition to its clinical triad of RES, parietal alopecia, and trigeminal anesthesia, CTD dysplasia is associated with a wide range of phenotypic and neurodevelopmental abnormalities.Treatment is symptomatic and includes physical rehabilitation, special education, dental care, and ocular protection against self-induced corneal trauma that causes ulcers and, later, corneal opacification. The prognosis is correlated to the mental development, motor handicap, corneal–facial anesthesia, and visual problems. Follow-up on a large number of patients with CTD dysplasia has never been reported and experience is limited to few cases to date. High degree of suspicion in a child presenting with characteristic alopecia and RES has a great importance in diagnosis of this syndrome.


2021 ◽  
pp. 123-130
Author(s):  
Anker Stubberud ◽  
Emer O’Connor ◽  
Erling Tronvik ◽  
Henry Houlden ◽  
Manjit Matharu

Mutations in the <i>CACNA1A</i> gene show a wide range of neurological phenotypes including hemiplegic migraine, ataxia, mental retardation and epilepsy. In some cases, hemiplegic migraine attacks can be triggered by minor head trauma and culminate in encephalopathy and cerebral oedema. A 37-year-old male without a family history of complex migraine experienced hemiplegic migraine attacks from childhood. The attacks were usually triggered by minor head trauma, and on several occasions complicated with encephalopathy and cerebral oedema. Genetic testing of the proband and unaffected parents revealed a de novo heterozygous nucleotide missense mutation in exon 25 of the <i>CACNA1A</i> gene (c.4055G&#x3e;A, p.R1352Q). The R1352Q <i>CACNA1A</i> variant shares the phenotype with other described <i>CACNA1A</i> mutations and highlights the interesting association of trauma as a precipitant for hemiplegic migraine. Subjects with early-onset sporadic hemiplegic migraine triggered by minor head injury or associated with seizures, ataxia or episodes of encephalopathy should be screened for mutations. These patients should also be advised to avoid activities that may result in head trauma, and anticonvulsants should be considered as prophylactic migraine therapy.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Yury A Barbitoff ◽  
Andrew G Matveenko ◽  
Anton B Matiiv ◽  
Evgeniia M Maksiutenko ◽  
Svetlana E Moskalenko ◽  
...  

Abstract Thousands of yeast genomes have been sequenced with both traditional and long-read technologies, and multiple observations about modes of genome evolution for both wild and laboratory strains have been drawn from these sequences. In our study, we applied Oxford Nanopore and Illumina technologies to assemble complete genomes of two widely used members of a distinct laboratory yeast lineage, the Peterhof Genetic Collection (PGC), and investigate the structural features of these genomes including transposable element content, copy number alterations, and structural rearrangements. We identified numerous notable structural differences between genomes of PGC strains and the reference S288C strain. We discovered a substantial enrichment of mid-length insertions and deletions within repetitive coding sequences, such as in the SCH9 gene or the NUP100 gene, with possible impact of these variants on protein amyloidogenicity. High contiguity of the final assemblies allowed us to trace back the history of reciprocal unbalanced translocations between chromosomes I, VIII, IX, XI, and XVI of the PGC strains. We show that formation of hybrid alleles of the FLO genes during such chromosomal rearrangements is likely responsible for the lack of invasive growth of yeast strains. Taken together, our results highlight important features of laboratory yeast strain evolution using the power of long-read sequencing.


Sign in / Sign up

Export Citation Format

Share Document