scholarly journals Blunted Expression of PPARa in Mice with FABP-4 and -5 Deficiency under Acute Cold Exposure

2017 ◽  
Vol 3 (6) ◽  
pp. 443
Author(s):  
Mas Rizky A.A Syamsunarno ◽  
Mirasari Putri ◽  
Tatsuya Iso ◽  
Rini Widyastuti ◽  
Ramdan Panigoro ◽  
...  

Brown Adipose Tissue (BAT) is a nonshivering thermogenesis organ during cold exposure. Peroxisomal proliferator activated receptor alpha (PPARa) is the member of the nuclear hormone receptor superfamily and primarily expressed in BAT and liver. PPARa is coordinated with uncoupling protein 1 (UCP1) to regulate fatty acid metabolism in BAT. Fatty acid binding protein (FABP)-4 and-5 play role in adaptive response under fasting and cold exposure. The purpose of this study was to investigate the expression of PPARa in mice with FABP4/5 deficiency (DKO). Wildtype (WT) and DKO mice were exposed to cold for 2 hours under fed or 20 hours-fasted conditions. BAT was collected and further mRNA level of PPARa was examined using quantitative real-time PCR. As the result, PPARa gene expression in WT mice were increased 50% and 100% in fed and fasted condition respectively after cold exposure. There was no alteration in PPARa expression in  BAT of DKO mice. As conclusion, The functional FABP-4 and -5 are necessary to modulate PPARa gene expression in Brown Adipose Tissue under acute cold exposure  Keywords: Acute cold exposure; FABP4; FABP5; Fasting  PPARa

2014 ◽  
Vol 222 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Abdoulaye Diané ◽  
Nikolina Nikolic ◽  
Alexander P Rudecki ◽  
Shannon M King ◽  
Drew J Bowie ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue,and neurohormone. Owing to its pleiotropic biological actions, knockout ofPacap(Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposedPacapnull mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response ofPacapnull mice during cold exposure. We compared the adaptive thermogenic capacity ofPacap−/−toPacap+/+mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposedPacap−/−mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar(Adrb3)) and hormone-sensitive lipase (Hsl(Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly,Pacap−/−mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis inPacapnull mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.


2020 ◽  
Vol 33 (3) ◽  
pp. 506-514
Author(s):  
Stephen B. Smith ◽  
Craig R. Sweatt ◽  
Gordon E. Carstens

Objective: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring.Methods: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6°C) or warm (28°C) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers.Results: Prenatal Cu exposure increased ewe plasma triiodothyronine (T<sub>3</sub>) and thyroxine concentration (T<sub>4</sub>) (p<0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T<sub>3</sub>, T<sub>4</sub>, glucose, or nonesterified fatty acid concentration (p≥0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p≤0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p≥0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p<0.001), increased BAT cytochrome c oxidase activity (p< 0.01), and depressed plasma fatty acid concentrations (p<0.001).Conclusion: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.


1996 ◽  
Vol 90 (s34) ◽  
pp. 16P-17P
Author(s):  
C Bing ◽  
L Pickavance ◽  
J S Keith ◽  
H M Frankish ◽  
Q Wang ◽  
...  

iScience ◽  
2021 ◽  
pp. 102434
Author(s):  
Winifred W. Yau ◽  
Kiraely Adam Wong ◽  
Jin Zhou ◽  
Nivetha Kanakaram Thimmukonda ◽  
Yajun Wu ◽  
...  

1995 ◽  
Vol 269 (1) ◽  
pp. R38-R47 ◽  
Author(s):  
J. M. Matz ◽  
M. J. Blake ◽  
H. M. Tatelman ◽  
K. P. Lavoi ◽  
N. J. Holbrook

The accumulation of heat shock proteins (HSPs) after the exposure of cells or organisms to elevated temperatures is well established. It is also known that a variety of other environmental and cellular metabolic stressors can induce HSP synthesis. However, few studies have investigated the effect of cold temperature on HSP expression. Here we report that exposure of Institute of Cancer Research (ICR) mice to cold ambient temperatures results in a tissue-selective induction of HSPs in brown adipose tissue (BAT) coincident with the induction of mitochondrial uncoupling protein synthesis. Cold-induced HSP expression is associated with enhanced binding of heat shock transcription factors to DNA, similar to that which occurs after exposure of cells or tissues to heat and other metabolic stresses. Adrenergic receptor antagonists were found to block cold-induced HSP70 expression in BAT, whereas adrenergic agonists induced BAT HSP expression in the absence of cold exposure. These findings suggest that norepinephrine, released in response to cold exposure, induces HSP expression in BAT. Norepinephrine appears to initiate transcription of HSP genes after binding to BAT adrenergic receptors through, as yet, undetermined signal transduction pathways. Thermogenesis results from an increase in activity and synthesis of several metabolic enzymes in BAT of animals exposed to cold challenge. The concomitant increase in HSPs may function to facilitate the translocation and activity of the enzymes involved in this process.


1988 ◽  
Vol 8 (5) ◽  
pp. 465-469 ◽  
Author(s):  
Gérard Mory ◽  
Myriam Gawer ◽  
Jean-Claude Kader

Chronic cold exposure of rats (9 days at 5°C) induces an alteration of the fatty acid composition of phospholipids in brown adipose tissue. The alteration is due to an increase of the unsaturation degree of these lipids. The phenomenon can be reproduced by 10−7 mole. h−1 administration of noradrenaline for 9 days in rats kept at 25°C. Thus, phospholipid alteration in brown fat of cold exposed rats is most probably a consequence of the increase of sympathetic tone which occurs in this tissue during exposure to cold.


Sign in / Sign up

Export Citation Format

Share Document