scholarly journals Utilization of Empty Fruit Bunch Fiber of Palm Oil Industry for Bio-Hydrogen Production

Author(s):  
Eka Sari ◽  
Mohammad Effendy ◽  
Nufus Kanani ◽  
Wardalia ◽  
Rusdi
2018 ◽  
Vol 154 ◽  
pp. 01036 ◽  
Author(s):  
Bachrun Sutrisno ◽  
Arif Hidayat

The palm oil industry is currently growing rapidly and generating large amounts of biomass waste that is not utilized properly. Palm empty fruit bunch (PEFB), by product of palm oil industry is considered as a promising alternative and renewable energy source that can be converted to a liquid product by pyrolysis process. In this work, pyrolysis of PEFB was studied to produce bio-oil. Pyrolysis experiments were carried out in a bench scale tubular furnace reactor. The effects of pyrolysis temperatures (400–600 °C) at heating rate of 10 °C/min to optimize the pyrolysis process for maximum liquid yield were investigated. The characteristics of bio-oil were analyzed using FTIR and GC–MS. The results showed that the maximum bio-oil yield was 44.5 wt. % of the product at 450 °C. The bio-oil products were mainly composed of acids, aldehydes, ketones, alcohols, phenols, and oligomers. The chemical characterization showed that the bio-oil obtained from PEFB may be potentially valuable as a fuel and chemical feedstock.


2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Nur Hidayah ◽  
Ikna Urwatul Wusko

Empty oil palm bunches are the largest solid waste produced from the palm oil industry processing. In processing 1 ton of fresh palm oil bunches, 230 Kg of empty palm oil bunches will be produced. Based on previous research, it is known that oil palm empty fruit bunches waste is proven to have a large amount of organic mass such as cellulose, hemicellulose, lignin. Organic content as mentioned is rich in benefits so that it can be used as raw material for making daily needs products ranging from food to complementary products such as household appliances, clothing and so on. For this reason, a study was conducted on the content of oil palm empty bunches originating from waste at PT. Kharisma Alam Persada. The characterization process was carried out using the SNI method 0128911992. From the research carried out it was found that the cellulose, hemicellulose and lignin content were 55.75%; 28.93% and 15.32% respectively. So that it is possible to be used as raw material for processing other products.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Subiyanto Subiyanto

Palm oil industry in Indonesia has been growing rapidly. But, unfortunately the growth is only effective on upstream industry with low value products, such that potential downstream value added are not explored proportionally. The government is therefore in the process of developing an appropriate policy to strengthen the national palm oil downstream industry. This paper proposes that an approriate policy for developing palm oil downstream industry could be derived from the maps of value chain and existing technology capability of the industry. The result recommends that government policy should emphasize on the supply of raw materials, infrastructure and utilities, as well as developing the missing value chain industry, especially ethoxylation and sulfonation.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Hironaga Akita ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Shinji Fujimoto

Malaysia is the second largest palm oil producer and exporter globally. When crude palm oil is produced in both plantations and oil processing mills, a large amount of oil palm empty fruit bunch (OPEFB) is simultaneously produced as a waste product. Here, we describe the preparation of hydrolysate from OPEFB. After OPEFB was hydrothermally treated at 180–200 °C, the resultant liquid phase was subjected to high-performance liquid chromatography analysis, while the solid phase was used for acidic and enzymatic hydrolysis. Hemicellulose yield from the acid-treated solid phase decreased from 153 mg/g-OPEFB to 27.5 mg/g-OPEFB by increasing the hydrothermal treatment temperature from 180 to 200 °C. Glucose yield from the enzyme-treated solid phase obtained after hydrothermal treatment at 200 °C was the highest (234 ± 1.90 mg/g-OPEFB, 61.7% production efficiency). In contrast, xylose, mannose, galactose, and arabinose yields in the hydrolysate prepared from the solid phase hydrothermally treated at 200 °C were the lowest. Thus, we concluded that the optimum temperature for hydrothermal pretreatment was 200 °C, which was caused by the low hemicellulose yield. Based on these results, we have established an effective method for preparing OPEFB hydrolysates with high glucose content.


2011 ◽  
Vol 40 (4) ◽  
pp. 1332-1339 ◽  
Author(s):  
M. Ansori Nasution ◽  
Z. Yaakob ◽  
Ehsan Ali ◽  
S. M. Tasirin ◽  
S.R.S Abdullah

Author(s):  
Nopriadi Saputra ◽  
Harry Sutanto ◽  
Irvan Prama Defindal

Sign in / Sign up

Export Citation Format

Share Document