Marshall-Olkin Alpha Power Inverse Weibull Distribution:Non Bayesian and Bayesian Estimations

2021 ◽  
Vol 10 (2) ◽  
pp. 327-345
2003 ◽  
Vol 17 (4) ◽  
pp. 195-202 ◽  
Author(s):  
Vanessa K. Lim ◽  
John L. Bradshaw ◽  
Michael E.R. Nicholls ◽  
Ian J. Kirk ◽  
Jeff P. Hamm ◽  
...  

AbstractSimple tapping and complex movements (Luria finger apposition task) were performed unimanually and bimanually by two groups of professional guitarists while EEG was recorded from electrodes over the sensorimotor cortex. One group had a task-specific movement disorder (focal dystonia or musicians' cramp), while the other group did not (controls). There were no significant group interactions in the task-related power (TRPow) within the alpha range of 8-10Hz (mu1). In contrast, there was a significant group interaction within the alpha range of 10-12Hz (mu2); these latter frequencies are associated with task-specific sensorimotor integration. The significant group interaction included task (simple and complex) by hand (left, right, and both) by electrodes (10 electrodes over the sensorimotor areas). In the rest conditions, the alpha power (10-12Hz) was comparable between the groups; during movement, however, compared to the controls, patients demonstrated the greatest TRPow (10-12Hz) over all conditions. This was particularly evident when patients used their affected hand and suggests that patients with musicians' cramp have impaired task-specific sensorimotor integration.


2020 ◽  
Author(s):  
B R Geib ◽  
R Cabeza ◽  
M G Woldorff

Abstract While it is broadly accepted that attention modulates memory, the contribution of specific rapid attentional processes to successful encoding is largely unknown. To investigate this issue, we leveraged the high temporal resolution of electroencephalographic recordings to directly link a cascade of visuo-attentional neural processes to successful encoding: namely (1) the N2pc (peaking ~200 ms), which reflects stimulus-specific attentional orienting and allocation, (2) the sustained posterior-contralateral negativity (post-N2pc), which has been associated with sustained visual processing, (3) the contralateral reduction in oscillatory alpha power (contralateral reduction in alpha > 200 ms), which has also been independently related to attentionally sustained visual processing. Each of these visuo-attentional processes was robustly predictive of successful encoding, and, moreover, each enhanced memory independently of the classic, longer-latency, conceptually related, difference-due-to memory (Dm) effect. Early latency midfrontal theta power also promoted successful encoding, with at least part of this influence being mediated by the later latency Dm effect. These findings markedly expand current knowledge by helping to elucidate the intimate relationship between attentional modulations of perceptual processing and effective encoding for later memory retrieval.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 292-293
Author(s):  
Lydia Nguyen ◽  
Shraddha Shende ◽  
Daniel Llano ◽  
Raksha Mudar

Abstract Value-directed strategic processing is important for daily functioning. It allows selective processing of important information and inhibition of irrelevant information. This ability is relatively preserved in normal cognitive aging, but it is unclear if mild cognitive impairment (MCI) affects strategic processing and its underlying neurophysiological mechanisms. The current study examined behavioral and EEG spectral power differences between 16 cognitively normal older adults (CNOA; mean age: 74.5 ± 4.0 years) and 16 individuals with MCI (mean age: 77.1 ± 4.3 years) linked to a value-directed strategic processing task. The task used five unique word lists where words were assigned high- or low-value based on letter case and were presented sequentially while EEG was recorded. Participants were instructed to recall as many words as possible after each list to maximize their score. Results revealed no group differences in recall of low-value words, but individuals with MCI recalled significantly fewer high-value words and total number of words relative to CNOA. Group differences were observed in theta and alpha bands for low-value words, with greater synchronized theta power for CNOA than MCI and greater desynchronized alpha power for MCI than CNOA. Collectively, these findings demonstrate that more effortful neural processing of low-value words in the MCI group, relative to the CNOA group, allowed them to match their behavioral performance to the CNOA group. Individuals with MCI appear to utilize more cognitive resources to inhibit low-value information and might show memory-related benefits if taught strategies to focus on high-value information processing.


Author(s):  
Pieter Huycke ◽  
Pieter Verbeke ◽  
C. Nico Boehler ◽  
Tom Verguts

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Canhuang Luo ◽  
Rufin VanRullen ◽  
Andrea Alamia

Abstract Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In this study, we investigated the relationship between conscious perception and the generation and the amplitude of PE. Specifically, we displayed two coloured Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors, we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the PE generated by the perceived (dominant) and non-perceived (suppressed) stimulus, respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition) and higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate a correlation between conscious perception and PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah Tune ◽  
Mohsen Alavash ◽  
Lorenz Fiedler ◽  
Jonas Obleser

AbstractSuccessful listening crucially depends on intact attentional filters that separate relevant from irrelevant information. Research into their neurobiological implementation has focused on two potential auditory filter strategies: the lateralization of alpha power and selective neural speech tracking. However, the functional interplay of the two neural filter strategies and their potency to index listening success in an ageing population remains unclear. Using electroencephalography and a dual-talker task in a representative sample of listeners (N = 155; age=39–80 years), we here demonstrate an often-missed link from single-trial behavioural outcomes back to trial-by-trial changes in neural attentional filtering. First, we observe preserved attentional–cue-driven modulation of both neural filters across chronological age and hearing levels. Second, neural filter states vary independently of one another, demonstrating complementary neurobiological solutions of spatial selective attention. Stronger neural speech tracking but not alpha lateralization boosts trial-to-trial behavioural performance. Our results highlight the translational potential of neural speech tracking as an individualized neural marker of adaptive listening behaviour.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


Sign in / Sign up

Export Citation Format

Share Document