scholarly journals Conscious perception and perceptual echoes: a binocular rivalry study

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Canhuang Luo ◽  
Rufin VanRullen ◽  
Andrea Alamia

Abstract Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In this study, we investigated the relationship between conscious perception and the generation and the amplitude of PE. Specifically, we displayed two coloured Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors, we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the PE generated by the perceived (dominant) and non-perceived (suppressed) stimulus, respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition) and higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate a correlation between conscious perception and PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.

2020 ◽  
Author(s):  
Canhuang Luo ◽  
Rufin VanRullen ◽  
Andrea Alamia

AbstractAlpha rhythms (~10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (~10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations which can last for as long as one second. This alpha reverberation, dubbed Perceptual Echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In the current study, we investigated whether conscious perception modulates the generation and the amplitude of PE. Specifically, we displayed two colored Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the perceptual echoes generated by the perceived (dominant) and non-perceived (suppressed) stimulus respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition), and significantly higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate that conscious perception modulates PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.


2014 ◽  
Vol 369 (1641) ◽  
pp. 20130534 ◽  
Author(s):  
Theofanis I. Panagiotaropoulos ◽  
Vishal Kapoor ◽  
Nikos K. Logothetis

The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness , are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eslam Mounier ◽  
Bassem Abdullah ◽  
Hani Mahdi ◽  
Seif Eldawlatly

AbstractThe Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Pinti ◽  
M. F. Siddiqui ◽  
A. D. Levy ◽  
E. J. H. Jones ◽  
Ilias Tachtsidis

AbstractWith the rapid growth of optical-based neuroimaging to explore human brain functioning, our research group has been developing broadband Near Infrared Spectroscopy (bNIRS) instruments, a technological extension to functional Near Infrared Spectroscopy (fNIRS). bNIRS has the unique capacity of monitoring brain haemodynamics/oxygenation (measuring oxygenated and deoxygenated haemoglobin), and metabolism (measuring the changes in the redox state of cytochrome-c-oxidase). When combined with electroencephalography (EEG), bNIRS provides a unique neuromonitoring platform to explore neurovascular coupling mechanisms. In this paper, we present a novel pipeline for the integrated analysis of bNIRS and EEG signals, and demonstrate its use on multi-channel bNIRS data recorded with concurrent EEG on healthy adults during a visual stimulation task. We introduce the use of the Finite Impulse Response functions within the General Linear Model for bNIRS and show its feasibility to statistically localize the haemodynamic and metabolic activity in the occipital cortex. Moreover, our results suggest that the fusion of haemodynamic and metabolic measures unveils additional information on brain functioning over haemodynamic imaging alone. The cross-correlation-based analysis of interrelationships between electrical (EEG) and haemodynamic/metabolic (bNIRS) activity revealed that the bNIRS metabolic signal offers a unique marker of brain activity, being more closely coupled to the neuronal EEG response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Giacopelli ◽  
Domenico Tegolo ◽  
Emiliano Spera ◽  
Michele Migliore

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


2021 ◽  
Author(s):  
Shachar Sherman ◽  
Koichi Kawakami ◽  
Herwig Baier

The brain is assembled during development by both innate and experience-dependent mechanisms1-7, but the relative contribution of these factors is poorly understood. Axons of retinal ganglion cells (RGCs) connect the eye to the brain, forming a bottleneck for the transmission of visual information to central visual areas. RGCs secrete molecules from their axons that control proliferation, differentiation and migration of downstream components7-9. Spontaneously generated waves of retinal activity, but also intense visual stimulation, can entrain responses of RGCs10 and central neurons11-16. Here we asked how the cellular composition of central targets is altered in a vertebrate brain that is depleted of retinal input throughout development. For this, we first established a molecular catalog17 and gene expression atlas18 of neuronal subpopulations in the retinorecipient areas of larval zebrafish. We then searched for changes in lakritz (atoh7-) mutants, in which RGCs do not form19. Although individual forebrain-expressed genes are dysregulated in lakritz mutants, the complete set of 77 putative neuronal cell types in thalamus, pretectum and tectum are present. While neurogenesis and differentiation trajectories are overall unaltered, a greater proportion of cells remain in an uncommitted progenitor stage in the mutant. Optogenetic stimulation of a pretectal area20,21 evokes a visual behavior in blind mutants indistinguishable from wildtype. Our analysis shows that, in this vertebrate visual system, neurons are produced more slowly, but specified and wired up in a proper configuration in the absence of any retinal signals.


2008 ◽  
Vol 99 (1) ◽  
pp. 200-207 ◽  
Author(s):  
Olivia Andrea Masseck ◽  
Klaus-Peter Hoffmann

Single-unit recordings were performed from a retinorecipient pretectal area (corpus geniculatum laterale) in Scyliorhinus canicula. The function and homology of this nucleus has not been clarified so far. During visual stimulation with a random dot pattern, 45 (35%) neurons were found to be direction selective, 10 (8%) were axis selective (best neuronal responses to rotations in both directions around one particular stimulus axis), and 75 (58%) were movement sensitive. Direction-selective responses were found to the following stimulus directions (in retinal coordinates): temporonasal and nasotemporal horizontal movements, up- and downward vertical movements, and oblique movements. All directions of motion were represented equally by our sample of pretectal neurons. Additionally we tested the responses of 58 of the 130 neurons to random dot patterns rotating around the semicircular canal or body axes to investigate whether direction-selective visual information is mapped into vestibular coordinates in pretectal neurons of this chondrichthyan species. Again all rotational directions were represented equally, which argues against a direct transformation from a retinal to a vestibular reference frame. If a complete transformation had occurred, responses to rotational axes corresponding to the axes of the semicircular canals should have been overrepresented. In conclusion, the recorded direction-selective neurons in the Cgl are plausible detectors for retinal slip created by body rotations in all directions.


2019 ◽  
Author(s):  
Georg Schauer ◽  
Carolina Yuri Ogawa ◽  
Naotsugu Tsuchiya ◽  
Andreas Bartels

AbstractThe content of conscious perception is known to correlate with steady-state responses (SSRs), yet their causal relationship remains unclear. Can we manipulate conscious perception by directly interfering with SSRs through transcranial alternating current stimulation (tACS)? Here, we directly addressed this question in three experiments involving binocular rivalry and continuous flash suppression (CFS). Specifically, while participants (N=24) viewed either binocular rivalry or tried to detect stimuli masked by CFS, we applied sham or real tACS across parieto-occipital cortex at either the same or a different frequency and phase as an SSR eliciting flicker stimulus. We found that tACS did not differentially affect conscious perception in the forms of predominance, CFS detection accuracy, reaction time, or metacognitive sensitivity, confirmed by Bayesian statistics. We conclude that tACS application at frequencies of stimulus-induced SSRs does not have perceptual effects and that SSRs may be epiphenomenal to conscious perception.


2020 ◽  
Author(s):  
Charalabos Papageorgiou ◽  
Anastasios E. Giannopoulos ◽  
Athanasios S. Fokas ◽  
Paul M. Thompson ◽  
Nikolaos C. Kapsalis ◽  
...  

ABSTRACTHumans are equipped with the so-called Mental Time Travel (MTT) ability, which allows them to consciously construct and elaborate past or future scenes. The mechanisms underlying MTT remain elusive. This study focused on the late positive potential (LPP) and alpha oscillations, considering that LPP covaries with the temporal continuity whereas the alpha oscillations index the temporal organization of perception. To that end, subjects were asked to focus on performing two mental functions engaging working memory, which involved mental self-projection into either the present-past (PP) border or the present-future (PF) border. To evaluate underlying mechanisms, the evoked frontal late positive potentials (LPP) as well as their cortical sources were analyzed via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique. The LPP amplitudes - in the left lateral prefrontal areas that were elicited during PF tasks - were significantly higher than those associated with PP, whereas opposite patterns were observed in the central and right prefrontal areas. Crucially, the LPP activations of both the PP and PF self-projections overlapped with the brain’s default mode network and related interacting areas. Finally, we found enhanced alpha-related activation with respect to PP in comparison to PF, predominantly over the right hemisphere central brain regions (specifically, the precentral gyrus). These findings confirm that the two types of self-projection, as reflected by the frontally-distributed LPP, share common cortical resources that recruit different brain regions in a balanced way. This balanced distribution of brain activation might signify that biological time tends to behave in a homeostatic way.


Sign in / Sign up

Export Citation Format

Share Document