scholarly journals Bone marrow stem cells-derived extracellular matrix is a promising material

Oncotarget ◽  
2017 ◽  
Vol 8 (58) ◽  
pp. 98336-98347 ◽  
Author(s):  
Xiaoyan Wang ◽  
Guanghua Chen ◽  
Chao Huang ◽  
Hualei Tu ◽  
Jilong Zou ◽  
...  
2007 ◽  
Vol 361-363 ◽  
pp. 1075-1078
Author(s):  
Michiyo Honda ◽  
Shigeki Izumi ◽  
Nobuyuki Kanzawa ◽  
Takahide Tsuchiya ◽  
Mamoru Aizawa

Appropriate culture conditions cause bone marrow stem cells to differentiate into multilineage cells such as adipocytes, chondrocytes, and osteoblasts. One key factor that regulates intercellular signaling and cell differentiation is the extracellular matrix microenvironment. The composition of the extracellular matrix influences cellular functions. In the present study, we investigated the effects of a microenvironment comprising a three-dimensional apatite-fiber scaffold (AFS) that has two kinds of pores (micro- and macro pores) on proliferation and subsequent differentiation of bone marrow stem cells. Morphologic observation revealed that osteoblastic cells in the AFS were distributed primarily in the same location on the fibrous scaffold and formed bridges within micro- and macro pores. We used molecular approaches to evaluate cell proliferation and differentiation in detail. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that culturing bone marrow cells on AFS increases expression of osteocalcin (OC) mRNA compared with culture in a dish. Furthermore, cells cultured in AFS expressed type X collagen (Col X), which is a marker of hypertrophic cartilage. These data suggest that the three-dimensional microenvironment of AFS facilitates cell proliferation and differentiation, and promotes endochondral ossification of bone marrow cells.


2021 ◽  
pp. 002203452110246
Author(s):  
P.-C. Chang ◽  
Z.-J. Lin ◽  
H.-T. Luo ◽  
C.-C. Tu ◽  
W.-C. Tai ◽  
...  

To establish an ideal microenvironment for regenerating maxillofacial defects, recent research interests have concentrated on developing scaffolds with intricate configurations and manipulating the stiffness of extracellular matrix toward osteogenesis. Herein, we propose to infuse a degradable RGD-functionalized alginate matrix (RAM) with osteoid-like stiffness, as an artificial extracellular matrix, to a rigid 3D-printed hydroxyapatite scaffold for maxillofacial regeneration. The 3D-printed hydroxyapatite scaffold was produced by microextrusion technology and showed good dimensional stability with consistent microporous detail. RAM was crosslinked by calcium sulfate to manipulate the stiffness, and its degradation was accelerated by partial oxidation using sodium periodate. The results revealed that viability of bone marrow stem cells was significantly improved on the RAM and was promoted on the oxidized RAM. In addition, the migration and osteogenic differentiation of bone marrow stem cells were promoted on the RAM with osteoid-like stiffness, specifically on the oxidized RAM. The in vivo evidence revealed that nonoxidized RAM with osteoid-like stiffness upregulated osteogenic genes but prevented ingrowth of newly formed bone, leading to limited regeneration. Oxidized RAM with osteoid-like stiffness facilitated collagen synthesis, angiogenesis, and osteogenesis and induced robust bone formation, thereby significantly promoting maxillofacial regeneration. Overall, this study supported that in the stabilized microenvironment, oxidized RAM with osteoid-like stiffness offered requisite mechanical cues for osteogenesis and an appropriate degradation profile to facilitate bone formation. Combining the 3D-printed hydroxyapatite scaffold and oxidized RAM with osteoid-like stiffness may be an advantageous approach for maxillofacial regeneration.


2017 ◽  
Vol 10 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Ervina Julien Sitanggang ◽  
Radiana Dhewayani Antarianto ◽  
Sri Widia A. Jusman ◽  
Jeanne Adiwinata Pawitan ◽  
Ahmad Aulia Jusuf

2001 ◽  
Vol 120 (5) ◽  
pp. A62-A62
Author(s):  
S FORBES ◽  
M ALISON ◽  
K HODIVALADILKE ◽  
R JEFFERY ◽  
R POULSOM ◽  
...  

2008 ◽  
Vol 7 ◽  
pp. 114-115
Author(s):  
R AKCHURIN ◽  
T RAKHMATZADE ◽  
E SKRIDLEVSKAYA ◽  
L SAMOYLENKO ◽  
V SERGIENKO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document