scholarly journals Mouse double minute 2 (MDM2) upregulates Snail expression and induces epithelial-to-mesenchymal transition in breast cancer cells in vitro and in vivo

Oncotarget ◽  
2016 ◽  
Vol 7 (24) ◽  
pp. 37177-37191 ◽  
Author(s):  
Xiangdong Lu ◽  
Caiyun Yan ◽  
Yi Huang ◽  
Dongmin Shi ◽  
Ziyi Fu ◽  
...  
Neoplasma ◽  
2016 ◽  
Vol 63 (06) ◽  
pp. 901-910 ◽  
Author(s):  
B. SMOLKOVA ◽  
S. MIKLIKOVA ◽  
V. HORVATHOVA KAJABOVA ◽  
A. BABELOVA ◽  
N. EL YAMANI ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 213 ◽  
Author(s):  
Marco Franchi ◽  
Valentina Masola ◽  
Gloria Bellin ◽  
Maurizio Onisto ◽  
Konstantinos-Athanasios Karamanos ◽  
...  

: Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo.


Planta Medica ◽  
2019 ◽  
Vol 85 (09/10) ◽  
pp. 755-765 ◽  
Author(s):  
K. J. Senthil Kumar ◽  
M. Gokila Vani ◽  
Han-Wen Hsieh ◽  
Chin-Chung Lin ◽  
Sheng-Yang Wang

AbstractAntcin-A (ATA) is a steroid-like phytochemical isolated from the fruiting bodies of a precious edible mushroom Antrodia cinnamomea. We previously showed that ATA has strong anti-inflammatory and anti-tumor effects; however, other possible bioactivities of this unique compound remain unexplored. In the present study, we aimed to investigate the modulation of epithelial-to-mesenchymal transition (EMT), anti-migration, and anti-invasive potential of ATA against human breast cancer cells in vitro. Human breast cancer cell lines, MCF-7 and MDA-MB-231, were incubated with ATA for 24 h. Wound healing, trans-well invasion, western blot, q-PCR, F-actin staining, and immunofluorescence assays were performed. We found that treatment with ATA significantly blocked EMT processes, as evidenced by upregulation of epithelial markers (E-cadherin and occludin) and downregulation of mesenchymal markers (N-cadherin and vimentin) via suppression of their transcriptional repressor ZEB1. Next, we found that ATA could induce miR-200c, which is a known player of ZEB1 repression. Further investigations revealed that ATA-mediated induction of miR-200c is associated with transcriptional activation of p53, as confirmed by the fact that ATA failed to induce miR-200c or suppress ZEB1 activity in p53 inhibited cells. Further in vitro wound healing and trans-well invasion assays support that ATA could inhibit migratory and invasive potentials of breast cancer cells, and the effect was likely associated with induced phenotypic modulation. Taken together, the present study suggests that antcin-A could be a lead phyto-agent for the development of anti-metastatic drug for breast cancer treatment.


Data in Brief ◽  
2019 ◽  
Vol 25 ◽  
pp. 104118 ◽  
Author(s):  
Dimiter Avtanski ◽  
Anabel Garcia ◽  
Beatriz Caraballo ◽  
Priyanthan Thangeswaran ◽  
Sela Marin ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1730
Author(s):  
Evodie Peperstraete ◽  
Clément Lecerf ◽  
Jordan Collette ◽  
Constance Vennin ◽  
Ludivine Raby ◽  
...  

Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.


2015 ◽  
Vol 27 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Haiyu Li ◽  
Xingfeng Chen ◽  
Yue Gao ◽  
Jiayan Wu ◽  
Fan Zeng ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


Sign in / Sign up

Export Citation Format

Share Document