scholarly journals Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

Oncotarget ◽  
2016 ◽  
Vol 7 (23) ◽  
pp. 35390-35403 ◽  
Author(s):  
Fang-Tian Xu ◽  
Zhi-Jie Liang ◽  
Hong-Mian Li ◽  
Qi-Liu Peng ◽  
Min-Hong Huang ◽  
...  
2015 ◽  
Vol 37 (5) ◽  
pp. 1890-1902 ◽  
Author(s):  
Fang-Tian Xu ◽  
Hong-Mian Li ◽  
Cheng-Yi Zhao ◽  
Zhi-Jie Liang ◽  
Min-Hong Huang ◽  
...  

Background/Aims: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs) into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. Methods: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control) or with basic chondrogenic inductive medium plus 10 µg/ml (group B), 50 µg/ml (group C), or 100µg/ml ginsenoside Rg1 (group D). Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN) was determined using real-time PCR in all groups. Results: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D) but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II), collagen type XI (CO-XI), acid phosphatase (ACP), cartilage oligomeric matrix protein (COMP) and ELASTIN compared with the control (group A) at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. Conclusions: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent after chondrogenic induction in conditions containing ginsenoside Rg1.


2022 ◽  
Author(s):  
Katarína Kacvinská ◽  
Martina Trávničková ◽  
Lucy Vojtová ◽  
Petr Poláček ◽  
Jana Dorazilová ◽  
...  

Abstract This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
A.E. di Lauro ◽  
D. Abbate ◽  
B. Dell’Angelo ◽  
G.A. Iannaccone ◽  
F. Scotto ◽  
...  

Medicine ◽  
2020 ◽  
Vol 99 (40) ◽  
pp. e22507
Author(s):  
Aimin Cui ◽  
Jing Zhou ◽  
Mahmoud Mudalal ◽  
Yao Wang ◽  
Jia Wang ◽  
...  

2021 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results: We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro . Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


2021 ◽  
Vol 54 (03) ◽  
pp. 278-283
Author(s):  
Pallavi Priyadarshini ◽  
Soumi Samuel ◽  
Basan Gowda Kurkalli ◽  
Chethan Kumar ◽  
Basavarajappa Mohana Kumar ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) are the most preferred cell type, based on their phenotypic characteristics, plasticity, and favorable immunological properties for applications in soft-tissue augmentation. Hence, the present in vitro study was aimed to evaluate the adipogenic differentiation potential of human ADSCs upon culturing individually with collagen gel and platelet-rich fibrin (PRF). Materials and methods: The collected lipoaspirate was used for establishing ADSCs using enzymatic digestion method. Then, the cells were analyzed for their morphology, viability, proliferation rate, population doubling time (PDT), colony-forming ability, cell surface markers expression, and osteogenic differentiation as biological properties. Further, ADSCs were evaluated for their adipogenicity using induction media alone, and by culturing with collagen gel and PRF individually for prospective tissue augmentation. Results: ADSCs were successfully established in vitro and exhibited a fibroblast-like morphology throughout the culture period. Cells had higher viability, proliferation potential and showed their ability to form colonies. The positive expression of cell surface markers and osteogenic ability confirmed the potency of ADSCs. The ADSCs cultured on collagen gel and PRF, individually, showed higher number of differentiated adipocytes than ADSCs grown with adipogenic induction medium alone. Conclusion: The extent of lipid accumulation by ADSCs was slightly higher when cultured on collagen gel than on PRF. Additional experiments are required to confirm better suitability of scaffold materials for soft-tissue regeneration.


2020 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in craniofacial region is a major challenge, and the soft tissue regeneration is crucial in determining the therapeutic outcome of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) which are homologous to craniofacial tissue, and represent a promising source for craniofacial tissue regeneration. Exosomes, which contained compound bioactive contents, are the key factors of stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue.Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularisation were detected by measuring wound area, histological and immunofluorescence analysis in the palate gingiva CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo mediated ECs angiogenesis in vitro was tested by immunofluorescence staining, Western blot and Pull-Down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect the vascularisation and wound healing through Cdc42.Results: We showed that SCAP-Exo promoted tissue regeneration of palatal gingiva CSD by enhancing vascularisation in the early phase in vivo, and also indicated SCAP-Exo improved the angiogenic capacity of endothelial cells (ECs) in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via cell division cycle 42 (Cdc42) signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs, and the Cdc42 protein could be reused directly by the recipient ECs, which resulted in the activation of Cdc42 dependent filopodia formation and elevation of cell migration of ECs.Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used as a cell-free approach to optimize tissue regeneration in the clinic.


Sign in / Sign up

Export Citation Format

Share Document