scholarly journals Antioxidant and antihypertensive activity of bovine whey protein concentrate enzymatic hydrolysates

Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 161-169
Author(s):  
XOCHITL TOVAR JIMÉNEZ

Whey is a highly polluting by-product of cheese processing. However, it has valuable nutritional properties since it is a rich and balanced source of proteins and amino acids. Therefore, it has a broad range of functional properties that can be exploited for diverse applications. Research has shown how the enzymatic hydrolysis of whey proteins releases bioactive peptides. In the present study, the hydrolysis of whey protein concentrate (WCP) was performed using purified Sporisorium reilianum aspartyl protease (Eap1), commercial enzymes chymotrypsin (C) and trypsin (T), as well as different enzymatic combinations in order to determine which enzyme or combination allowed for the release of peptides presenting the highest antioxidant and antihypertensive activity levels; our results indicated that hydrolysis with Eap1 releases the best-performing peptides in comparison with individual enzymes and their combinations.

2020 ◽  
Vol 319 ◽  
pp. 126472 ◽  
Author(s):  
María Belén Ballatore ◽  
Marina del Rosario Bettiol ◽  
Noelia L. Vanden Braber ◽  
Carla Aylen Aminahuel ◽  
Yanina Estefanía Rossi ◽  
...  

2011 ◽  
Vol 23 (No. 2) ◽  
pp. 51-63 ◽  
Author(s):  
B. Wróblewska ◽  
L. Jędrychowski

The manuscript presents the application of an animal model, Balb/c mice, in studies aimed at identifying among enzymatic hydrolysates of sodium caseinate and whey proteins the product with the most beneficial impact on the animal organism. One- and two-step hydrolyses were carried out using the following enzymes: Alcalase (Novo Nordisk), papain (Sigma), and Lactozym (Novo Nordisk). Estimations were also made with a peptide fraction, the so-called II fraction, of WPC (Whey Protein Concentrate) and Alcalase hydrolysate with molecular masses lower than 12.4 kDa. The levels of specific IgG and IgA were determined in blood serum and intestinal extracts of mice. The hydrolysis of sodium caseinate with the use of Alcalase was found to affect the reduction in the material allergenicity. Of all whey hydrolysates, the most promising results were obtained upon the application of the II fraction of WPC and Alcalase hydrolysate (M.W. < 12.4 kDa).    


Author(s):  
N. B. Slyvka ◽  
O. Ya. Bilyk ◽  
O. R. Mikhailytska ◽  
Yu. R. Hachak

The purpose of the work was to investigate the effect of whey proteins and dry whey concentrates on the change of titrated and active acidity during digestion. In order to stabilize the consistency in the production of low-fat yogurts, dry whey was selected that met the requirements of State Standard 4552:2006. It is used to improve the taste of finished products, to add flavor, to improve the texture, as well as to improve overall quality. In addition, dry whey protein concentrate WPC 80 Milkiland was used. The addition of whey protein concentrate does not detract from the organoleptic characteristics of a normalized mixture, which allows it to be used in yogurt technology. The addition of whey proteins has a significant effect on the duration of gel formation. Whey protein concentrate and dry whey reduce the duration of latent fermentation and flocculation stages. The data obtained allows us to predict that they accelerate the coagulation process. This effect is enhanced by increasing the dose of protein concentrates. Conducted coagulation of milk with a different dose and observed changes in titrated and active acidity during the fermentation. Yogurt culture YF-L903, which includes Streptococcus salivarius subsp., Thermophilus, Lactobacillus delbrűeckii subsp. Bulgaricus were used for fermentation. The highest growth rate of titrated acidity is recorded for option 1 (0.5% dry sucrose) and controls that for 4 hours. the fermentation reached 80 °T. The highest rate of decline in active acidity is recorded in option 1 (0.5% dry sucrose serum). All samples for 4 hours of fermentation reached 4.65–4.72 units. pH. Thus, the acidity slightly increases with increasing the dose of serum protein concentrate and does not increase with the use of dry whey.


2005 ◽  
Vol 230 (8) ◽  
pp. 536-542 ◽  
Author(s):  
Yongdong Zhao ◽  
Berdine R. Martin ◽  
Meryl E. Wastney ◽  
Linda Schollum ◽  
Connie M. Weaver

The acute and chronic effects of whey proteins on calcium metabolism and bone were evaluated. In acute studies, 8-week-old male rats were gavaged with 50 mg whey protein concentrate (WPC) and 25 mg calcium. 45Ca was administered intravenously or orally. Kinetic studies were performed, and femurs were harvested. Four of seven WPCs significantly increased femur uptake of 45Ca compared with controls. One WPC at 50 mg enhanced calcium absorption over a range of calcium Intakes from 35.1 ± 9.4% to 42.4 ± 14.0% (P < 0.01). Three of the most effective WPCs were tested further in a chronic feeding study. One hundred 3-week-old rats were randomly divided into four adequate dietary calcium (ADC; 0.4% Ca) groups (control of 20% casein and three WPC groups with 1% substitution of casein with each of three WPCs) and two low calcium (LC; 0.2% Ca) groups (control of 20% casein and one WPC group with 1% substitution of casein with one WPC). After 8 weeks, there was no effect of WPCs on femur uptake of 45Ca among ADC groups and there was no effect of WPCs on calcium retention, femur breaking force, femur bone mineral density, or total femur calcium at either dietary calcium intake. However, whole body bone mineral content (BMC) was significantly higher (P < 0.05) in the three whey protein concentrate ADC groups compared with the ADC control group. Total BMC at the proximal tibia in whey protein ADC groups was increased, as shown by peripheral quantitative computed tomography. Our results indicate that the acute calcium absorption–enhancing effect of whey proteins did not persist through long-term feeding in rats. However, the initial enhancement of calcium absorption by whey protein was sufficient to Increase BMC.


1997 ◽  
Vol 64 (2) ◽  
pp. 281-288 ◽  
Author(s):  
CHUN W. WONG ◽  
AI H. LIU ◽  
GEOFFREY O. REGESTER ◽  
GEOFFREY L. FRANCIS ◽  
DENNIS L. WATSON

The effects of ruminant whey and its purified fractions on neutrophil chemotaxis and superoxide production in sheep were studied. Both colostral whey and milk whey were found to inhibit chemotaxis regardless of whether they were autologous or homologous, but the inhibitory effects were abolished by washing neutrophils with culture medium before their use in the chemotaxis assay. Colostral whey and milk whey also inhibited the chemotactic activity of zymosan-activated serum. Whey fractions of various degrees of purity such as lactoferrin, lacto-peroxidase, lactoferrin–lactoperoxidase, α-lactalbumin, bovine serum albumin and whey protein concentrate were then studied. While none of these proteins showed any effects on chemotaxis, lactoferrin–lactoperoxidase and whey protein concentrate were found to have an enhancing effect on superoxide production in a dose-dependent manner. Our results provide information on the modulatory role of ruminant milk proteins in inflammatory responses and warrant future investigation.


2011 ◽  
Vol 94 (9) ◽  
pp. 4347-4359 ◽  
Author(s):  
M.A.D. Listiyani ◽  
R.E. Campbell ◽  
R.E. Miracle ◽  
L.O. Dean ◽  
M.A. Drake

2013 ◽  
Vol 9 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Marialice P.C. Silvestre ◽  
Wendel O. Afonso ◽  
Carlos O. Lopes Junior ◽  
Viviane D.M. Silva ◽  
Mariana W.S. Souza ◽  
...  

AbstractIn this work, the influence of some reactional parameters in the hydrolysis of whey protein concentrate (WPC) was evaluated, in terms of the nutritional quality of peptide profiles of the hydrolysates as well as the reduction of costs for scaling-up the process. Two enzymes (subtilisin and pancreatin) were used for preparing 18 hydrolysates, using different E:S ratios and reaction times, and the distribution of peptides according to chain length was analyzed by size-exclusion chromatography. The studied parameters affected the peptide profiles of WPC hydrolysates and the best result was similar for subtilisin and pancreatin, both using an E:S ratio of 4:100, after 5 h and 10 h, respectively. In these conditions, these enzymes gave rise to the smallest large peptide contents (12.28% and 12.34%, respectively) and one of the highest amount of di- and tripeptides (13.34% and 13.00%, respectively) as well as of free amino acids (45.56% and 47.26%, respectively). However, in terms of number of samples the action of pancreatin was more advantageous than subtilisin, since among the nine hydrolysates, four showed appropriate peptide profiles (P1, P2, P5, and P6), from the nutritional point of view, while the same happened only with one hydrolysate prepared by using subtilisin (S3). Also, the economical advantage of using smaller E:S ratio and reaction time was observed in several cases for both enzymes.


Sign in / Sign up

Export Citation Format

Share Document