scholarly journals Data augmentation using back-translation for context-aware neural machine translation

Author(s):  
Amane Sugiyama ◽  
Naoki Yoshinaga
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gong-Xu Luo ◽  
Ya-Ting Yang ◽  
Rui Dong ◽  
Yan-Hong Chen ◽  
Wen-Bo Zhang

Neural machine translation (NMT) for low-resource languages has drawn great attention in recent years. In this paper, we propose a joint back-translation and transfer learning method for low-resource languages. It is widely recognized that data augmentation methods and transfer learning methods are both straight forward and effective ways for low-resource problems. However, existing methods, which utilize one of these methods alone, limit the capacity of NMT models for low-resource problems. In order to make full use of the advantages of existing methods and further improve the translation performance of low-resource languages, we propose a new method to perfectly integrate the back-translation method with mainstream transfer learning architectures, which can not only initialize the NMT model by transferring parameters of the pretrained models, but also generate synthetic parallel data by translating large-scale monolingual data of the target side to boost the fluency of translations. We conduct experiments to explore the effectiveness of the joint method by incorporating back-translation into the parent-child and the hierarchical transfer learning architecture. In addition, different preprocessing and training methods are explored to get better performance. Experimental results on Uygur-Chinese and Turkish-English translation demonstrate the superiority of the proposed method over the baselines that use single methods.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3082
Author(s):  
Ranto Sawai ◽  
Incheon Paik ◽  
Ayato Kuwana

Data augmentation has recently become an important method for improving performance in deep learning. It is also a significant issue in machine translation, and various innovations such as back-translation and noising have been made. In particular, current state-of-the-art model architectures such as BERT-fused or efficient data generation using the GPT model provide good inspiration to improve the translation performance. In this study, we propose the generation of additional data for neural machine translation (NMT) using a sentence generator by GPT-2 that produces similar characteristics to the original. BERT-fused architecture and back-translation are employed for the translation architecture. In our experiments, the model produced BLEU scores of 27.50 for tatoebaEn-Ja, 30.14 for WMT14En-De, and 24.12 for WMT18En-Ch.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


2021 ◽  
pp. 1-12
Author(s):  
Sahinur Rahman Laskar ◽  
Abdullah Faiz Ur Rahman Khilji ◽  
Partha Pakray ◽  
Sivaji Bandyopadhyay

Language translation is essential to bring the world closer and plays a significant part in building a community among people of different linguistic backgrounds. Machine translation dramatically helps in removing the language barrier and allows easier communication among linguistically diverse communities. Due to the unavailability of resources, major languages of the world are accounted as low-resource languages. This leads to a challenging task of automating translation among various such languages to benefit indigenous speakers. This article investigates neural machine translation for the English–Assamese resource-poor language pair by tackling insufficient data and out-of-vocabulary problems. We have also proposed an approach of data augmentation-based NMT, which exploits synthetic parallel data and shows significantly improved translation accuracy for English-to-Assamese and Assamese-to-English translation and obtained state-of-the-art results.


Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


2018 ◽  
Author(s):  
Elena Voita ◽  
Pavel Serdyukov ◽  
Rico Sennrich ◽  
Ivan Titov

Author(s):  
Hongfei Xu ◽  
Deyi Xiong ◽  
Josef van Genabith ◽  
Qiuhui Liu

Existing Neural Machine Translation (NMT) systems are generally trained on a large amount of sentence-level parallel data, and during prediction sentences are independently translated, ignoring cross-sentence contextual information. This leads to inconsistency between translated sentences. In order to address this issue, context-aware models have been proposed. However, document-level parallel data constitutes only a small part of the parallel data available, and many approaches build context-aware models based on a pre-trained frozen sentence-level translation model in a two-step training manner. The computational cost of these approaches is usually high. In this paper, we propose to make the most of layers pre-trained on sentence-level data in contextual representation learning, reusing representations from the sentence-level Transformer and significantly reducing the cost of incorporating contexts in translation. We find that representations from shallow layers of a pre-trained sentence-level encoder play a vital role in source context encoding, and propose to perform source context encoding upon weighted combinations of pre-trained encoder layers' outputs. Instead of separately performing source context and input encoding, we propose to iteratively and jointly encode the source input and its contexts and to generate input-aware context representations with a cross-attention layer and a gating mechanism, which resets irrelevant information in context encoding. Our context-aware Transformer model outperforms the recent CADec [Voita et al., 2019c] on the English-Russian subtitle data and is about twice as fast in training and decoding.


Author(s):  
Shuo Ren ◽  
Zhirui Zhang ◽  
Shujie Liu ◽  
Ming Zhou ◽  
Shuai Ma

Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.


Sign in / Sign up

Export Citation Format

Share Document