Adaptive Control of the Shock Absorber with Magnetorheological Fluid in the Car Suspension

Author(s):  
S.P. Kruglov ◽  
I.A. Zakovyrin

The disadvantages of car suspension control systems include their inability to function with uncertainty of the suspension parameters and external disturbances, as well as the impossibility of quickly countering the latter. A new suspension control algorithm is proposed, which is able to reduce the impacts on the vehicle body from the road as well as inertial forces under the uncertainty of these parameters. The algorithm is adaptive and is based on the parametric identification of the mathematical model of the controlled object, performed by the control system in real time, and also on the use of an implicit reference model. A shock absorber with a magnetorheological fluid acts as a controlled element, which is capable of changing the degree of suspension damping. On the example of a two-mass model of the "quarter car" suspension, a model study of the effectiveness of the developed algorithm in comparison with a passive suspension was carried out. The results of the study showed the ability of the proposed adaptive suspension control algorithm to function under the current a priori uncertainty, improving the properties of the suspension in the low frequency range, which is most important for ensuring comfortable conditions for the driver and passengers.

Author(s):  
Xubin Song ◽  
Dongpu Cao

Through the simulation study of a semiactive quarter car suspension, this paper is to expatiate on the control algorithm documented in the United States Patent 6,873,890 [1]. That patent presents a new method to design semiactive suspension controls in the frequency domain. As is well known, suspension related dynamics has two dominant modes in the working frequency range up to 25Hz. As such, the suspension dynamic system has three distinguishable frequency sections. In order to achieve better performance, different controls have to be applied to each frequency section, respectively. The significant core part of the patented algorithm is to provide an approach to identify the excited frequencies in real time that are transmitted through the vehicle suspension. Then different controls of such as skyhook, groundhook and other damping strategies are combined accordingly to accomplish the best performance overall. Thus through the suspension control the vehicle dynamics (such as ride and handling) is expected to be improved in the broad frequency range in comparison to passive suspensions with a trade-off design.


Author(s):  
M. A. Ajaj ◽  
A. M. Sharaf ◽  
S. A. Hegazy ◽  
Y. H. Hossamel-deen

This paper presents a comprehensive investigation of automotive semi-active suspension control algorithms and compares their characteristics in terms of ride comfort and tire-road holding ability. Particular attention has been paid to the semi-active suspension systems fitted with a shock absorber of dual damping characteristics. Different mathematical models are presented to investigate the ride response considering both simplified and complex vehicle models. Numerical simulation has been carried out through the MATLAB/SIMULINK environment which aids the future development of controllable suspension systems to improve vehicle ride comfort. The results show a considerable improvement of the vehicle ride response using different schemes of semi-active suspension system in particular the modified groundhook control algorithm.


Author(s):  
Baek-soon Kwon ◽  
Daejun Kang ◽  
Kyongsu Yi

This article deals with the design of a partial preview active suspension control algorithm for the improvement of vehicle ride comfort. Generally, while preview-controlled active suspension systems have even greater potential than feedback-controlled systems, their main challenge is obtaining preview information of the road profile ahead. A critical drawback of the “look-ahead” sensors is an increased risk of incorrect detection influenced by water, snow, and other soft obstacles on the road. In this work, a feasible wheelbase preview suspension control algorithm without information about the road elevation has been developed based on a novel 3-degree-of-freedom full-car dynamic model which incorporates only the vehicle body dynamics. The main advantage of the employed vehicle model is that the system disturbance input vector consists of vertical wheel accelerations that can be measured easily. The measured acceleration information of the front wheels is used for predictive control of the rear suspension to stabilize the body motion. The suspension state estimator has also been designed to completely remove the effect of unknown road disturbance on the state estimation error. The estimation performance of an observer is verified via a simulation study and field tests. The performance of the proposed suspension controller is evaluated on a frequency domain and time domain via a simulation study. It is shown that the vehicle ride comfort can be improved more by the proposed wheelbase preview control approach than by the feedback approach.


1991 ◽  
Author(s):  
Kazufumi Kumagai ◽  
Toshiro Abe ◽  
John L. Bretl ◽  
Teruhiko Ishigaki ◽  
Ryugo Takgi

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wenqing Zhang ◽  
Jie Li ◽  
Kun Zhang ◽  
Peng Cui

Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB) controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT) in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.


2013 ◽  
Vol 641-642 ◽  
pp. 371-376 ◽  
Author(s):  
Shi Sha Zhu ◽  
Xue Peng Qian ◽  
Hao He ◽  
Quan Fu Zhang

When the Electrorheological elastomer (ERE) is embedded into intelligence structure system, the structure damping and stiffness of the system can be changed quickly and reversibly under an external electric field. Thus, the application of the Electrorheological elastomer in the active and passive hybrid control of structural vibration has already attracted people's wide attention. In this paper, three types of ER elastomer were prepared based on barium titanate, starch, then the microstructure of ER elastomer was observed and the mechanical properties were analyzed; a shear mode ERE shock absorber was designed, the vibration response performance of which was experimentally evaluated under various excitation frequency with or without the applied field. The experimental results showed that the damping and stiffness of the shock absorber could be modified with a changing external electric field, whose macro-features was that the damping coefficient increased with the increase of the electric field, and the damping effect in the high frequency was better than in the low frequency.


Sign in / Sign up

Export Citation Format

Share Document