Analysis of the dynamic operating modes of the verticalization system of the universal launch complex for a promising super-heavy ILV

Author(s):  
V.G. Zotov ◽  
A.O. Nikitin ◽  
A.V. Yazykov

The paper presents the results of the analysis of the dynamic processes occurring at different stages of the operation of the installation unit of the super-heavy-class space rocket complex for one of the options for completing the Yenisei space rocket, intended for both the implementation of the lunar program and deep space exploration. Verticalization and installation of the ILV under consideration on the launch pad is carried out by a lifting and installation unit of an original design. The main feature of this unit is the presence of two tilting axes. The considered type of installation unit has not previously been used in domestic complexes for ILV. Despite some similarities of such a unit with a classic installer with lifting frame, in the course of its operation, specific operating modes arise with increased dynamic loading of the unit structure and the lifted product. The calculations made it possible to propose constructive solutions that ensure a decrease in dynamic loads on a space rocket during verticalization and installation on a launch pad.

2020 ◽  
pp. 45-48
Author(s):  
S.I. Malafeev ◽  
A.A. Malafeeva ◽  
V.I. Konyashin

A correction method for regulating the mechatronic system of a «DUO-300» rolling mill with a direct current electric drive is considered. The results of the study of dynamic processes in the mechatronic system with the proposed correction are presented. Keywords rolling mill, mechatronic system, model, electric drive, engine, regulator, correction. [email protected]


Author(s):  
James F. Soeder ◽  
Anne Mcnelis ◽  
Raymond Beach ◽  
Nancy McNelis ◽  
Timothy Dever ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adriana Salatino ◽  
Claudio Iacono ◽  
Roberto Gammeri ◽  
Stefano T. Chiadò ◽  
Julien Lambert ◽  
...  

AbstractOrienting attention in the space around us is a fundamental prerequisite for willed actions. On Earth, at 1 g, orienting attention requires the integration of vestibular signals and vision, although the specific vestibular contribution to voluntary and automatic components of visuospatial attention remains largely unknown. Here, we show that unweighting of the otolith organ in zero gravity during parabolic flight, selectively enhances stimulus-driven capture of automatic visuospatial attention, while weakening voluntary maintenance of covert attention. These findings, besides advancing our comprehension of the basic influence of the vestibular function on voluntary and automatic components of visuospatial attention, may have operational implications for the identification of effective countermeasures to be applied in forthcoming human deep space exploration and habitation, and on Earth, for patients’ rehabilitation.


2018 ◽  
Vol 226 ◽  
pp. 04024
Author(s):  
Valeriy V. Grechikhin ◽  
Galina A. Galka ◽  
Anatoliy I. Ozerskiy ◽  
Mikhail E. Shoshiashvili

The article describes the method of dynamic operating modes investigation in electrohydraulic drive systems with improved accuracy of positioning output element. The method is the evolution of the fundamental positions of the mechanics of continuous media with moving boundaries as applied to the research of non-stationary processes accompanying the operation of hydraulic drive systems with piston hydraulic machines. The method is based on generalized modeling (technical, physical, mathematical and computer), takes into account the peculiarities of mutual influence of electric and hydraulic machines during their joint work as part of the electrohydraulic drive, which raises the level and adequacy of actuators simulation, as well as the reliability of the assessment of their technical condition. The method extends the field of research, improves the accuracy of the calculation of the positioning of the executive elements, taking into account the different dynamic modes of the drives under study.


Author(s):  
J. Wright ◽  
S. Burleigh ◽  
M. Maruya ◽  
S. Maxwell ◽  
R. Pischel

2019 ◽  
Vol 2 ◽  
pp. 61-70
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Oleksandr Gorobchenko ◽  
Serhii Turpak ◽  
Iryna Kyrychenko ◽  
...  

An increase in the volume of bulk cargo transportation through international transport corridors necessitates the commissioning of tank containers. Intermodalization of a tank container predetermines its load in various operating conditions depending on the type of vehicle on which it is carried: aviation, sea, air or rail. The analysis of the operating conditions of tank containers, as well as the regulatory documents governing their workload, led to the conclusion that the most dynamic loads acting on the supporting structures during transportation by rail. Namely, during the maneuvering collision of a wagon-platform, on which there are tank containers. In this case, it is stipulated that for a loaded tank container, the dynamic load is assumed to be 4g, and for an empty (for the purpose of checking the reinforcement) – 5g. It is important to note that when the tank container is underfilled with bulk cargo and taking into account movements of fittings relative to fittings, the maximum value of dynamic load can reach significantly larger values. Therefore, in order to ensure the strength of tank containers, an improvement of their structures has been proposed by introducing elastic-viscous bonds into the fittings. To determine the dynamic loading of the tank container, taking into account the improvement measures, mathematical models have been compiled, taking into account the presence of elastic, viscous and elastic-viscous bonds between the fittings, stops and fittings. It is established that the elastic bond does not fully compensate for the dynamic loads acting on the tank container. The results of mathematical modeling of dynamic loading, taking into account the presence of viscous and elastic-viscous coupling in the fittings, made it possible to conclude that the maximum accelerations per tank container do not exceed the normalized values. The determination of the dynamic loading of the tank container is also carried out by computer simulation using the finite element method. The calculation takes place in the software package CosmosWorks. The maximum values of accelerations are obtained, as well as their distribution fields relative to the supporting structure of the tank container. The developed models are verified by the Fisher criterion. The research will contribute to the creation of tank containers with improved technical, operational, as well as environmental characteristics and an increase in the efficiency of the liquid cargo transportation process through international transport corridors.


Sign in / Sign up

Export Citation Format

Share Document