scholarly journals Reclaimation of Sodic Bore Well Water for Irrigation through Gypsum Treatment at Anbil Dharmalingam Agricultural College and Research Institute, Trichirapalli District, Tamil Nadu

2019 ◽  
Vol 39 (04) ◽  
Author(s):  
K Pradeepa ◽  
G Lavanya ◽  
S Inbarasan ◽  
T Sherene ◽  
P Balasubramaniam

It is necessary to ascertain the quality of irrigation water at Anbil Dharmalingam Agricultural College and Research Institute farm in order to monitor the possible effects of the sodic irrigation water on the soil. Irrigation with sodic water enhances soil sodicity built up in soils of experimental farm which leads to adverse effects on soil physical, chemical and biological properties, not fitted for farming. In areas where ground water is sodic and where good quality surface water supplies are either inadequate or not available at all and the farmers are left with no option but to use sodic ground water for irrigation purposes, which pose grave risks for soil health and environment. The quality of sodic water can be improved by treating with gypsum. Due to gypsum dissolution calcium and sulphate ions come in soluble form in irrigation water. Research conducted at Anbil Dharmalingam Agricultural College and Research Institute Trichy for reclamation of sodic bore well water revealed that the sodic bore water samples collected from bore well 1 (AMP shed) having initial Residual Sodium Carbonate (RSC) of 8.0 meq /lit and bore well 6 (Boys hostel) having initial RSC of 6.2 meq /lit indicated the decrease in RSC upto - 0.6 meq / l and 1.2 meq / l respectively due to gypsum treatment with 0.1 per cent (12.50 tons/ha) and 0.35 per cent ( 43.75 tons /ha ) at the retention time of 1 hour to irrigate 1 ha paddy field throughout crop establishment stage. It was concluded that for lowest retention time higher doses of gypsum was required for sodic water reclamation. As we increased the retention time, the required gypsum quantity was also minimized as observed for bore well 1 (AMP shed 8 meq/l)) sodic water samples with gypsum dose of 0.15 per cent (18.75 tons /ha) with the retention time of 4 hours. These findings were very much helpful for the farmers of Manikandam block, Tiruchirappallii district having secondary sodicity built up in soils due to sodic water irrigation during summer.

2019 ◽  
Vol 8 (4) ◽  
pp. 9869-9875

Potable ground water quality is at risk due to contamination by pollution, sewage, industrial effluents along the nearby areas of Mula-Mutha river banks in eastern metropolitan region of Puneand needed treatment especially disinfection for making it domestically usable. The phytoremediation is one of the important useful method when considered for treatment of water in rural area. The study involved monitoring the quality of ground water in the selected areas along the banks of the river using physicochemical and biologicql parametersin continuation with our earlier studies. For the disinfection treatmentthe commonly found plantsin the area viz. Neem, Tulsi, and Amlawere selected and for the water samples, onsite river water samples and bore well water samples were used. The plants leaves were extracted by water and alcohol and the extracts in dose response manner were used to treat the water. The treated water was monitored for presence of Total coliform and E.coli, the indicators of contamination, using petri film method. The resultsshowedrandom presence of total coliform and E.coli in bore well water samples indicating contaminationand the need fordisinfection.The disinfection study showed that alcoholic leaves extracts were more potent in disinfecting the water samples than aqueous extracts. The complete disinfection by alcoholic extracts was shown at concentration of 21.12mg, 42.8mg and 24.07mgfor Tulsi, Neem and Amla respectively.


2020 ◽  
Vol 31 (1) ◽  
pp. 123-134
Author(s):  
Sujan Maharjan ◽  
Tista Prasai Joshi ◽  
Rashim Koju ◽  
Sujan Man Shrestha

The limited availability, accessibility and deterioration of the water quality in Kathmandu valley have led to the high demand of ground water. This study aims to evaluate ground water quality of the Kathmandu valley. In this study, the physio-chemical parameters of water samples were performed using standard procedures. Also, total coliforms were enumerated using standard membrane filtration technique to quantify the bacterial contamination. Water samples were collected from July 2017 to July 2018. The results revealed that 56% and 73% of well and boring water samples, respectively exceeded standard value of iron recommended by National Drinking Water Quality Standards, 2005. Likewise, ammonia content was higher in 41% of well water and 35% of boring water samples than standard. However, few numbers of water samples were contaminated with arsenic (0.27% and 2.6% of well and boring water samples, respectively) and nitrate (3% and 8% of well and boring water samples, respectively). Besides, 96% of well water samples and 88% of boring water samples were contaminated with total coliform bacteria. Our data indicated that groundwater quality of Kathmandu valley was poor, which was not suitable for direct drinking purposes. Therefore, regular monitoring and treatment of groundwater is recommended before using accordingly.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 392 ◽  
Author(s):  
Sabir Nurtazin ◽  
Steven Pueppke ◽  
Temirkhan Ospan ◽  
Azamat Mukhitdinov ◽  
Timur Elebessov

The thinly populated Balkhash District of Kazakhstan’s Almaty Region lies in the lower reaches of the Ili-Balkhash basin, which is shared by China and Kazakhstan. The district is arid and heavily dependent on inflows of surface water, which are threatened by the effects of upstream population growth, economic development, and climate change. The quality of drinking water from centralized water systems and tube wells in nine villages of the district was analyzed, and the organoleptic properties of water from these sources was also assessed by an expert and via surveys of local residents. Although most samples met governmental standards for the absence of chemical impurities, high concentrations of mineralization, chlorides, boron, iron, and/or uranium were present in some well water samples. Levels of these pollutants were as much as 4-fold higher than governmental maxima and as much as 16-fold higher than concentrations reported previously in surface water. All centralized water samples met standards for absence of microbial contamination, but total microbial counts in some well water samples exceeded standards. Organoleptic standards were met by all the water from five villages, but centralized water from one village and well water from four villages failed to meet standards based on expert judgment. Residents were, for the most part, more satisfied with centralized rather than well water, but there was no obvious relationship between the failure of water to meet standards and the locations or populations of the settlements. This is the first comprehensive assessment of groundwater used for drinking in the lower Ili-Balkhash basin, and although it relies on a limited number of samples, it nevertheless provides evidence of potentially serious groundwater contamination in the Balkhash District. It is thus imperative that additional and more detailed studies be undertaken.


Author(s):  
Dr. Narayana Shenoy ◽  
Inchara Ramesh ◽  
Ananya H M ◽  
Keyword(s):  

2021 ◽  
Vol 7 (9) ◽  
pp. 1515-1528
Author(s):  
Hazir S. Çadraku

Groundwater is an important source for a drink and irrigation in the Blinaja river basin. Understanding knowledge of irrigation water quality is critical to the management of water for long-term productivity. Historically for this study area there is no data and information regarding the quality and use of water for irrigation needs. Therefore, there was a need to assess water quality based on data analysed from eight sampling points. The purpose of this paper is to evaluate, relying on analytical results, the quality of groundwater in the Blinaja river basin for the purpose of its use for irrigation of agricultural crops. For this purpose, in the Blinaja River Basin in different months during 2015, 2016, 2018 and 2019, 28 water samples were taken to assess the quality of groundwater for irrigation. Water samples were analysed in a laboratory for some of the key quality indicators; pH, EC, hardness (TH), Ca, Mg, Na, K, HCO3, SO4, Cl, etc. and then irrigation water quality indices were calculated such as: percentage of Na (% Na), SAR (Sodium Adsorption Ratio), PI (Permeability index), KR (Kelly's ratio), etc. The overall objective of this study was to assess the quality of water to be used by the inhabitants of the area for irrigation of agricultural crops. Analytical procedures for the laboratory determinations of water quality have been given in several publications (USDA Handbook 60 by Richards, 1954; FAO Soils Bulletin 10 by Dewis and Freitas1970; APHA 2005). Doi: 10.28991/cej-2021-03091740 Full Text: PDF


2020 ◽  
Vol 15 (2) ◽  
pp. 97-100
Author(s):  
G. Sridevi

Soil and water salinity is one of the major problems in the world for agricultural production. Tomato is one of the ten most important fruit and vegetables consumed in the world, with approximately one hundred million tonnes of fresh tomato fruit being produced worldwide every year. This research was conducted to determine the different evels of EC d S m-1 in irrigation water collected from Central Farm well water and Bore well water of Agricultural College and Research Institute, Madurai and Periyar Vaigai Command water in the year 2018 were evaluated Based on their growth and yield of tomato (PKM 1) . The results indicated that there was consistent decrease in yield with increase in salt concentration in saline irrigation water and yield and it was found that the maximum salinity tolerance is 2 d S m-1.


Author(s):  
D. Kannan ◽  
Dr. N. Mani

The present study was to assess the quality of ground water from various parts of Thanjavur district, and check its fitness for drinking purpose. The pH was determined by pH metric method, calcium, magnesium, chloride were analyzed by titration method, sulphade, iron, nitrate, nitrite, chromium were estimated by spectrometric method ,total dissolved solids of the water samples were determined by gravimetrically, colour of the water samples were determined by platinum-cobalt method ,taste of the water samples were determined by taste rating method, turbidity of the water samples were determined by Nephelometric method etc., are determined for some parts of Thanjavur district water samples and compared with standard limits recommended by BIS. Comparative study of groundwater for this region can be used for the quality of water is suitable for drinking purpose, but the ground water sample numbers S2, S3, S4, S5, S6, S7 and S9 is not suitable for drinking purpose, because in the presence of excess of hardness (Ca2+, Mg2+), chloride, and TDS.


2016 ◽  
Vol 2 (1) ◽  
pp. 35-37 ◽  
Author(s):  
Jacob Vincent

Ground water samples in and around from the dumpsite located in Arumuganeri were studied to assess the impact of Municipal solid waste on the ground water resources. Ground water samples were collected from the 5 different bore-wells in and around the dumpsites.The collected water samples were analyzed for parameters of Total Dissolved Solids (TDS), Total Alkalinity (TA), Total hardness, chloride and dissolved oxygen. The results were observed in each sample , compared with standards WHO, ICMR, ISI and thus  an  attempt  was  made  to  ascertain  whether  the quality  of  ground  water  is  fit  or  not  for  drinking  and  other  purposes.


Sign in / Sign up

Export Citation Format

Share Document