PHYSICO CHEMICAL ANALYSIS OF GROUND WATER NEAR MUNICIPAL SOLID WASTE DUMPING SITES IN ARUMUGANERI, THOOTHUKUDI DISTRICT, TAMILNADU, INDIA

2016 ◽  
Vol 2 (1) ◽  
pp. 35-37 ◽  
Author(s):  
Jacob Vincent

Ground water samples in and around from the dumpsite located in Arumuganeri were studied to assess the impact of Municipal solid waste on the ground water resources. Ground water samples were collected from the 5 different bore-wells in and around the dumpsites.The collected water samples were analyzed for parameters of Total Dissolved Solids (TDS), Total Alkalinity (TA), Total hardness, chloride and dissolved oxygen. The results were observed in each sample , compared with standards WHO, ICMR, ISI and thus  an  attempt  was  made  to  ascertain  whether  the quality  of  ground  water  is  fit  or  not  for  drinking  and  other  purposes.

2019 ◽  
Vol 31 (3) ◽  
pp. 515-521
Author(s):  
Gurjeet Kaur ◽  
Sangeeta Sharma ◽  
Umesh Kumar Garg

Malwa region of Punjab state, India has become the center of water borne diseases due to excessive use of pesticides, chemical fertilizers, heavy metals, industrial toxins that cause toxicity in water. The main contamination in ground water is by physico-chemical parameters and heavy metals i.e. pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, arsenic and lead. The contamination of ground water with heavy metals causes health hazards to humans and animals. Due to lack of adequate facilities and resources for the management and handling of waste, the ground water contamination has been increased. In the present study, assessment of ground water quality was carried out in the villages of Ferozepur district of Punjab state, India. With main emphasis on analyzing the groundwater parameters of Ferozepur district which are responsible for health hazard to humans and animals. Various groundwater samples were collected randomly from the villages of Ferozepur district and analyzed for pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, heavy metals (arsenic and lead) using standard procedures. The concentrations of calcium, chlorides, fluorides and pH were within the permissible limits, whereas, alkalinity and total hardness were observed beyond permissible limits in most of the water samples. Even among majority of the samples taken, the concentration of arsenic and lead was found within the permissible limits. Results showed that the ground water samples collected from depth ranging from 100 to 360 ft, recorded values within permissible limits for drinking purpose as prescribed by WHO. Further, ANOVA has been applied on analysis results to study the effect of pH on fluoride and chloride, depth on fluoride and chloride and depth on arsenic and lead. Also, to adjudge the overall quality of water in Ferozepur district, the water quality index (WQI) has been calculated on the basis of large number of physico-chemical characteristics of water. The water quality index of ground water in Ferozepur district has been calculated to be 107. The value is close to 100 so the quality of ground water in Ferozepur district can be categorized under 'Good Quality' water.


The common practice of Municipal solid waste disposal method in developing countries is an unlined landfill dumping site. Due to this the natural resources land, water and air get polluted and also severely affected by the public living around the dumping yard. In this study, Srinivasapuram dumpsite in Thanjavur City Municipal Corporation area, India has been selected to investigate the quality of groundwater. Groundwater samples collected from 25 locations were tested as per standards for physical, chemical characteristics. The classical contour mapping method has been used to detect information from the recorded ground water quality data. Surfer 6.0 software has been used to convert the spatial data into equivalent contour map. Graphical method has been used to decide the area enclosed by each contour line. The water quality standards recommended by BIS and WHO were used to classify the critical regions based on the ground water contamination level. The water quality parameters such as pH value, Electrical conductivity, Total dissolved solids (TDS), Total Hardness (TH), Iron and Fluoride were considered for this analysis and other parameters were not included. All the collected groundwater samples the pH values are within the permissible limit of 6.5-8.5. The Electrical Conductivity vales range between 0.5mho/cm and 5.7mho/cm. The TDS values ranges between 200 and 3024 mg/l. The concentration of TDS is higher than the permissible level of the samples which are nearby the dumping yard as the contour lines are assembling around the dumpsite. The concentration of chlorides in all the samples under investigation is 12.4 to 1316 mg/l. It has been observed that concentration of total hardness (TH) of water samples varies from 118 mg/l to 2070mg/l. The presence of high concentration of iron and fluoride in the water samples adjacent to dumping yard indicate that it would have contaminated by leachate movement from MSW. The contour plots also reveal that the groundwater was contaminated as per the tests conducted for physical and chemical parameters.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
NEEL RATAN ◽  
SHARAT SRIVASTAVA ◽  
ALOK PATHAK ◽  
U.N. SINGH

Physico-chemical characteristics of Parichha dam reservoir of Jhansi in Uttar Pradesh have been studied. The water temperature varied between 23.0 to 37.00C. The transparency, pH, chlorides and total hardness were in the range of 100 to 145 cm, 7.8 to 9.2, 42.0 to 59.17 mg/l and 100-197 mg/l respectively. The total alkalinity, dissolved oxygen and total dissolved solids ranged between 193 to 389, 5.2 to 8.6 and 90 to 310 mg/l respectively. The study revealed that the reservoir water is suitable for fisheries.


2021 ◽  
Vol 34 (1) ◽  
pp. 118-126
Author(s):  
Ajay Sharma ◽  
B. Rupini

The increasing dependence on groundwater for domestic, irrigation, industrial and other purposes is giving adverse impact on the aquifers and environment of the area. The present study is focused on the physico-chemical analysis of groundwater quality of Tehsil Bah, located in Agra district of India. A total 84 samples of groundwater were collected from different locations throughout the area of the tehsil Bah. Total 16 test parameters were analyzed to assess the quality of groundwater by adopting methodology and techniques given in the American public health association (APHA), 2017. Total dissolved solids are not meeting the requirements of acceptable limit in all the locations as per Bureau of Indian standard IS 10500:2012. Total hardness, total alkalinity, chloride, calcium and magnesium values are also not met the requirements in most of the locations. Sodium and fluoride concentrations also exceed the prescribed limits of Indian standard in some places.


2007 ◽  
Vol 4 (2) ◽  
pp. 162-165 ◽  
Author(s):  
Susheel Kumar Sindhu ◽  
Amit Sharma

A systematic study has been carried out to explore the water quality index of ground water of various tehsils of Rampur district. Twenty five water samples from tube wells, open wells and hand pumps at various locations were collected and analyzed for pH, nitrate, turbidity, total dissolve solid, chlorides, total hardness, alkalinity and fluoride. In this study overall water quality of Rampur district is very poor and unsuitable for drinking purpose. Water quality of Bilaspur, Shahabad and Rampur city shows that water may not be used for drinking as well as domestic purpose. Present study recommends that the top priority should be given to water quality monitoring and indigenous technologies should be adopted to make water fit for drinking after treatment such as defluoridation, desalination.


Ground water occurs commonly and is widely distributed and is the most reliable resource the quality of ground water needs to be monitored and preserved. In this study, as a part of the research work an attempt is made to assess the health of ground water in Mustoor sub-watershed. 11 Samples are selected from the influencing major villages and villages with surface waterbody in the sub watershed. A water grade card is an aid to educate and remind about the conditions of naturally available water resource around the users with the help of Water Quality Index method in comparison with Indian Standards IS 10500. Multi-metric indicators and indices aid to build a water grade card, in this study 11 samples of ground water are tested for eight selected Physico-chemical parameters (pH, turbidity, iron, fluoride, chloride, nitrate, total dissolved solids and total hardness) in March and October months, 2018 as Pre and Post Monsoon months. GWQI method helps in assigning the grades. It is intended for diverse users: like any individuals and institutions to policymakers and planners. The indicators collectively provide the overall health that is scored and is graded to report the condition or quality of the groundwater in the sub watershed in a better understanding way to the common people with the help of grades.


2021 ◽  
Vol 1 (4) ◽  
pp. 377-381
Author(s):  
Gajbhiye RG ◽  
Mahakale RG ◽  
Raut RD ◽  
Dhakre MN

Ground water is one of the most useful water sources found in earth. The importance of the chemical analysis underlies the fact that the chemistry of ground water can directly be rated with the source of water, climate and geology of the region. Contamination of such water is responsible for creating health hazards. In this paper chemical analysis of the ground water has been carried out for Hinganghat in Wardha district. The water sample collected from different location in Hinganghat, Wardha (India). The ground water samples were analyzed for the following chemical parameters; pH, Electrical Conductivity (EC), Total Alkalinity (TA), Total Hardness (TH), Chloride, Nitrate, Sulphate, Dissolved Oxygen (DO) and Total Dissolved Solid (TDS). The results Obtained shown that it is free from anomalies and suitable for human and cattle consumption as well as irrigation purpose in Hinganghat, Wardha districts, Maharashtra, India.


2008 ◽  
Vol 5 (3) ◽  
pp. 435-446 ◽  
Author(s):  
Mayur C. Shah ◽  
Prateek G. Shilpkar ◽  
Pradip B. Acharya

Present communication deals with study of physico-chemical parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), calcium hardness (CaH), magnesium hardness (MgH), total hardness (TH), chloride (Cl-), fluoride (F-), sodium (Na+), potassium (K+), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and sulphate (SO42-) of water samples of bore wells of forty villages of Gandhinagar taluka of Gujarat state,India. The experimental values of water samples were compared with standard values given by World Health Organization (WHO) and United State Salinity Laboratory for drinking and irrigation purposes respectively. Water Quality Index (WQI) was also calculated to know the over all quality of water samples. The statistical analysis like mean, standard deviation (SD), coefficient of variance (% CV), analysis of variance (ANOVA),t-test, coefficient of correlation (r) and regression analysis of obtained data were carried out. The results show that the quality of water is poor and quite good for drinking and irrigation purposes respectively. The variance was found significant at 1% level of significance in case of sodium and potassium content and at 5% in case of total alkalinity and dissolved oxygen among the four regions (North, South, East and West) of Gandhinagar taluka. The linear relation also established for each pair of water quality parameters of studied water samples.


2017 ◽  
Vol 37 (1) ◽  
pp. 9-24
Author(s):  
F. N. Gyawu-Asante ◽  
S. Aikins ◽  
R. B. Voegborlo

A study of the water sources from Bibiani and its environs was conducted between November, 2009 and April, 2010 to determine whether contamination (of water sources) from (these parameters) physical, chemical and trace metal in Bibiani is as a result of mining or geochemicaland biochemical processes within the environment. This was done by collecting water samples from two streams, two rivers, three boreholes (BHs) and three hand dug wells (HDWs). These were analysed in the laboratory. Levels of Arsenic (As), Iron (Fe), Manganese (Mn), pH, TotalDissolved Solids (TDS), Electrical Conductivity (EC), Temperature, Alkalinity, Hardness, Phosphate (P) and Cyanide (CN) in water sources were determined. Mining related contaminants detected in water samples were As, CN, Mn and Fe. It was observed that surface water pH values were generally higher than that of groundwater samples. As concentrations in surface water samples were higher compared to that of groundwater samples. Also, CN concentration in ground water samples was higher than that of surface water. Ground water contained higher concentration of Mn than surface water; the opposite can be said of Fe concentration in surfacewater which was higher than that of ground water. The study also observed that pH, TDS, EC, total alkalinity, total hardness , Arsenic and total cyanide levels in the HDW and BH samples showed 100% compliance with the WHO and EPA limits while Mn and Fe levels indicated traces of non – compliance. Compared to WHO / EPA guidelines, few water sources had one or moretrace metal (Fe, As and Mn) levels outside acceptable limits for drinking. However, most of the levels were safe for human consumption.Keywords: Surface, gold mining, quality, degradation, Bibiani


2016 ◽  
Vol 13 (2) ◽  
pp. 116-121
Author(s):  
Krishna Arunachalam ◽  
Monikandon Sukumaran ◽  
Mohammad Tanveer ◽  
Kesavan Devarayan

In this study, the effect of ‘natural/self cleaning’ of ground water by precipitation after a decade of tsunami is evaluated along the coast of Kanniyakumari district, Tamil Nadu, India. The samples were collected from five stations namely Colachel, Muttom, Periyakadu, Manakudy, and Kanniyakumari. The physicochemical parameters such as turbidity, total dissolved solids, electrical conductivity, pH, alkalinity, total hardness, calcium, magnesium, sodium, potassium, chloride, and fluoride were evaluated and compared with the database of the pre-tsunami sample collected in 2004. The results indicated that the ‘natural cleaning’ has improved the quality of the ground water over the years after tsunami.


Sign in / Sign up

Export Citation Format

Share Document