Biochemical characterization of fruit juice for impact of storage on commercial beverages

2017 ◽  
Vol 36 (04) ◽  
Author(s):  
Sujata Sethy

The study was performed to evaluate the impact of storage time on safety and hygienic quality of commercial fruit beverage on the basis of market survey. Three most popular brands and three least popular brands of fruit beverages like squash and syrup were selected and stored for nine months at room temperature. The samples were subjected to chemical analysis for food colour, preservative (SO2), heavy metals (Pb and Cd), pectin and microbial analysis for bacteria, fungus, yeast and E. coli at bimonthly interval. Lead content in all the beverages and synthetic permitted food colours like sunset yellow 136.5 ppm in squash A and tartazine 133.2 ppm in squash B and 310.9 ppm in Syrup F was found which exceeded the permissible limit. Preservative (SO2) and cadmium content remained within the acceptable limit. Total bacterial and fungal count increased sharply with the advancement of storage particularly from 7th month onwards. Duration of storage had no effect on the colour and heavy metal content of the beverages.

Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


Author(s):  
Sherihan El- Ghafour ◽  
Nady Mikhael ◽  
Mohamed El- Ghandour

A comprehensive characterization of the GPU-3 Stirling engine losses with the aid of the CFD approach is presented. Firstly, a detailed description of the losses-related phenomena along with the method of calculating each type of loss are addressed. Secondly, an energy analysis of the engine is carried out in order to specify the impact of each type of losses on the performance. Finally, the design effectivity of each component of the engine is investigated using an exergy analysis. The results reveal that the hysteresis loss occurs mainly within the working spaces due to the flow jetting during the first part of the expansion strokes. Additionally, the pressure difference between the working spaces is the main driver for the flow leakage through the appendix gap. The exposure of the displacer top wall to the jet of hot gas flowing into the expansion space during expansion stroke essentially increases the shuttle heat loss. A new definition for the regenerator effectiveness is presented to assess the quality of the heat storage and recovery processes. The energy analysis shows that regenerator thermal loss and pumping power represent the largest part of the engine losses by about 9.2% and 7.5% of the heat input, respectively. The exergy losses within regenerator and cold space are the highest values among the components, consequently, they need to be redesigned.


2019 ◽  
Vol 63 (5) ◽  
pp. 709-731
Author(s):  
Wallace Manzano ◽  
Valdemar Vicente Graciano Neto ◽  
Elisa Yumi Nakagawa

Abstract Systems-of-Systems (SoS) combine heterogeneous, independent systems to offer complex functionalities for highly dynamic smart applications. Besides their dynamic architecture with continuous changes at runtime, SoS should be reliable and work without interrupting their operation and with no failures that could cause accidents or losses. SoS architectural design should facilitate the prediction of the impact of architectural changes and potential failures due to SoS behavior. However, existing approaches do not support such evaluation. Hence, these systems have been usually built without a proper evaluation of their architecture. This article presents Dynamic-SoS, an approach to predict/anticipate at design time the SoS architectural behavior at runtime to evaluate whether the SoS can sustain their operation. The main contributions of this approach comprise: (i) characterization of the dynamic architecture changes via a set of well-defined operators; (ii) a strategy to automatically include a reconfiguration controller for SoS simulation; and (iii) a means to evaluate architectural configurations that an SoS could assume at runtime, assessing their impact on the viability of the SoS operation. Results of our case study reveal Dynamic-SoS is a promising approach that could contribute to the quality of SoS by enabling prior assessment of its dynamic architecture.


2020 ◽  
Vol 75 (9) ◽  
pp. 2554-2563 ◽  
Author(s):  
Christopher Fröhlich ◽  
Vidar Sørum ◽  
Sandra Huber ◽  
Ørjan Samuelsen ◽  
Fanny Berglund ◽  
...  

Abstract Background MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure–activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. Objectives To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. Methods The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). Results Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. Conclusions These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.


1978 ◽  
Vol 41 (6) ◽  
pp. 450-454 ◽  
Author(s):  
D. A. SCHIEMANN

One hundred sixty-five samples of various foods were collected from 24 different Chinese take-out restaurants for bacteriological examination which included enumeration of Bacillus cereus by three media, MYP, KG and blood agars. Blood agar was less selective but no quantitative differences in recovery were apparent. Twenty-eight samples (15%) yielded B. cereus in excess of 100 per gram, and 20 of these were fried rice (33% positive), which also showed the poorest overall bacteriological quality. Biochemical characterization of 232 isolates of B. cereus showed 96% or more positive for catalase, nitrate reduction, beta-haemolysis, subterminal-ellipsoidal spores, aerobic and anaerobic utilization of glucose, Voges-Proskauer, fermentation of glycerol, gelatin hydrolysis, and alkaline peptonization of litmus milk; and a negative reaction in mannitol. Variable results were obtained for motility, fermentation of sucrose and salicin, and starch hydrolysis. Thirty-three isolates were susceptible to 12 of 19 antibiotics tested, and resistant to colistin. Six (18%) were susceptible to penicillin.


2019 ◽  
Vol 201 (12) ◽  
Author(s):  
Ute Lindenstrauß ◽  
Constanze Pinske

ABSTRACTTrabulsiella guamensisis a nonpathogenic enterobacterium that was isolated from a vacuum cleaner on the island of Guam. It has one H2-oxidizing Hyd-2-type hydrogenase (Hyd) and encodes an H2-evolving Hyd that is most similar to the uncharacterizedEscherichia coliformate hydrogenlyase (FHL-2Ec) complex. TheT. guamensisFHL-2 (FHL-2Tg) complex is predicted to have 5 membrane-integral and between 4 and 5 cytoplasmic subunits. We showed that the FHL-2Tgcomplex catalyzes the disproportionation of formate to CO2and H2. FHL-2Tghas activity similar to that of theE. coliFHL-1Eccomplex in H2evolution from formate, but the complex appears to be more labile upon cell lysis. Cloning of the entire 13-kbp FHL-2Tgoperon in the heterologousE. colihost has now enabled us to unambiguously prove FHL-2Tgactivity, and it allowed us to characterize the FHL-2Tgcomplex biochemically. Although the formate dehydrogenase (FdhH) genefdhFis not contained in the operon, the FdhH is part of the complex, and FHL-2Tgactivity was dependent on the presence ofE. coliFdhH. Also, in contrast toE. coli,T. guamensiscan ferment the alternative carbon source cellobiose, and we further investigated the participation of both the H2-oxidizing Hyd-2Tgand the H2-forming FHL-2Tgunder these conditions.IMPORTANCEBiological H2production presents an attractive alternative for fossil fuels. However, in order to compete with conventional H2production methods, the process requires our understanding on a molecular level. FHL complexes are efficient H2producers, and the prototype FHL-1Eccomplex inE. coliis well studied. This paper presents the first biochemical characterization of an FHL-2-type complex. The data presented here will enable us to solve the long-standing mystery of the FHL-2Eccomplex, allow a first biochemical characterization ofT. guamensis’s fermentative metabolism, and establish this enterobacterium as a model organism for FHL-dependent energy conservation.


2016 ◽  
Vol 227 ◽  
pp. 56-63 ◽  
Author(s):  
Azam Safary ◽  
Rezvan Moniri ◽  
Maryam Hamzeh-Mivehroud ◽  
Siavoush Dastmalchi

2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Krithika Rajagopalan ◽  
Elizabeth Nagle ◽  
Jonathan Dworkin

Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacteriumEscherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


Sign in / Sign up

Export Citation Format

Share Document